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Radars with continuous wave frequency (CW FM sonars) are used in radiolocation as 

‘silent radars’. They determine the distance to target by measuring the difference between the 

frequency of the sounding signal and echo signal. The article presents the principle of 

operation and parameters of silent CW FM sonars. Target distance determined by these 

sonars is based on the signal at the output of the matched filter. The Doppler effect is studied 

in detail to identify its effect on the sonar’s parameters. The results of theoretical calculations 

are presented together with the results of the sonar’s computer simulation.

INTRODUCTION

Stealth is the precondition of many of the military applications. Sonars will be difficult 

to detect by the enemy if the power emitted in the sounding signal is low, the signal is not  

a pulse signal and its spectrum is wide [1]. This suggests that sonars with continuous sounding 

signals and linear frequency modulation should be a good solution. They are in fact used in 

radiolocation and are known as the CW FM radar [2]. The reason why this concept cannot be 

easily applied in sonars is the Doppler effect with its significant and negative impact on the 

operation of CW FM sonars [1]. The article presents an analysis of the possibilities to build  

a silent sonar using filtration matched to the CW FM signal in place of the conventional 

solution which determines differential frequency between the transmitted and received signal.  

1. SILENT SONAR WITH MATCHED FILTRATION 

A matched filtration receiver is a practical and feasible version of the correlation 

receiver, [3]. The matched receiver acts as a filter with pulse response k(t) which is the 

inverse copy of the emitted signal s(t). As we know signal y(t) at the filter’s output is  

a combination of input signal x(t) and pulse response k(t) namely, [3]: 
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The pulse response of a matched filter is equal to: 

 )()( txtk  (2) 

where symbol (*) means the conjugate value of the complex signal. 

When we put these relations into formula (1) and change the denotation of the variables, 

we obtain: 

dttxtxrxx )()()(  (3) 

It is the auto-correlation function of signal x(t) hence the matched filter with pulse 

response (2) is equivalent to the correlation receiver. As we know, a receiver like that is the 

optimal detector of a known signal against the Gaussian noise [4]. 

In underwater acoustics we can accept that pulse response is equal to a time scale 

reversed emitted sounding signal: k(t) = s
*
(-t). The received signal without noise x(t) can be 

reduced to: 

 )()( oo ttsKtx  (4) 

where Ko is the fraction which shows the difference between the echo signal and emitted 

signal and to – is the delay versus the emitted signal s(t).

When we put the above relation to formula (1) we obtain: 

dttsttsKy )()()( 00  (5) 

Following the replacement t’=t-t0 we have: 

')]('[)'()( * dtttstsKy oo  (6) 

Using relation (3) we finally obtain: 

 )()( osso trKy  (7) 

The signal at the input of the matched filter is proportional to the auto-correlation 

function of the emitted signal where the function is shifted on the time axis by the delay of the 

received signal versus the transmitted sounding signal.  

Echo signal is detected when signal y( ) reaches its maximal value. As we know, the 

autocorrelation function always reaches the maximal value for a zero argument [4]. Formula 

(7) shows that it occurs at moment  = to. At this moment of time which is equal to the delay 

in echo signal, the signal at the matched filter’s output is: 

too EKty )(  (8) 
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where E is the energy of the emitted signal equal to: 

dttsty 2

0 |)(|)(  (9) 

If the usable signal is received together with Gaussian noise with power spectrum 

density N, then the output signal to noise ratio is [4]: 

N

EK
SNR to

m  (10) 

where Et is the energy of the sounding signal. 

For the purposes of detection the energy of the signals should be as high as possible and 

for the purposes of range resolution the autocorrelation function of the emitted signal should 

be narrow with possibly low levels of side lobes. Please note that signals with linear 

frequency modulation can meet both criteria. 

If the objective is to build a silent sonar  using matched filtration and FM signal, we 

must reduce the power of the emitted signal as much as we can. The underlying assumption of 

this postulate is that the enemy does not know the sounding signal we are using and hence 

cannot use a matched filter. During detection the enemy receiver’s signal to noise ratio is 

equal to [4]: 
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where Pr is the power of the received signal and 
2
 is the variance of noise in the receiver’s 

transfer band. 

The power of the received signal is: 
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where T is the duration of the sounding signal with energy Et, Pt is the power of that signal 

and Kr is the coefficient of reduced power as a result of loss during propagation. Because  
2
= NB where B is the receiver’s transfer band, hence:

BN

P
KSNR t

rum  (13) 

As you can see, by reducing the power of the sounding signal we deteriorate the enemy 

receiver’s signal to noise ratio hampering detection of the sounding signal. We can produce 

the same positive effect by increasing the width of the sounding signal spectrum. In the 

formula above the listening bandwidth B is equal to the width of the sounding signal 

spectrum. If the enemy uses a wider listening bandwidth because they do not know the 

location or width of the sounding signal spectrum, the level of noise is rising and deteriorates 

the signal to noise ratio. If, on the other hand, they choose a band which is too narrow (or  

if the band does not match the sounding signal spectrum), power Pt is decreasing which also 

reduces SNRum.
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A reduction in the power of the sounding signal which maintains the same duration 

causes a drop in energy Es and deteriorates detection performance of the operator’s sonar. 

This is shown in the quotient of both signal to noise ratios which is equal to: 
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The above relation shows that the enemy’s detection capacity deteriorates when 

compared to a matched filtration sonar and that it continues to deteriorate as the duration of 

the sounding signal T grows longer and its spectrum B grows wider. Although power is not  

a key component of the above formula, this does not mean that it should not be as low as 

possible. For a high level of power Pt the signal to noise ratio SNRum can be high enough for 

detection to occur even though it is significantly below the SNRm.

Now let us consider the effect of coefficients K0 and Kt on detection capacity. 

Coefficient K0 (formula 4) refers to the amplitude of the echo signal. When used in an 

echolocation system, if we leave out absorption damping, the amplitude is inversely 

proportional to r0
2
, where r0 is the distance between the target and sonar. The amplitude also 

depends on target strength TS [5] and so coefficient K0 can be approximated as: 

20/

2

0

2

1
0 10TS

r

r
K  (15) 

Coefficient Kr (formula 12) shows the signal power, hence: 
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We put the relations into formula (14) and obtain: 
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Let us assume, as an example, that the minimal assumed target strength of the sonar is  

TS= 20 dB and that the sonar and detection listening system operate at the same sounding 

signal to noise ratio, we then obtain: 

BTr

rr 10
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With the above relation we can determine the ratio between the distance of the listening 

system and target and the sonar at which the detection capacity of the sonar and listening 

system are the same. It can be treated as equivalent to the ratio of range in both systems. As you 

can see, the ratio improves as the BT product of the sounding signal grows. As an example, 

when B = 2.5 kHz, and T = 10 s then rr/r0  1/50. If the range of the sonar for TS = 20 dB is 

15 km, then the listening system can detect sounding pulses at 300 m away from the sonar. 

This is a very satisfactory result.  

The power of the sounding pulse can be determined for the sonar’s assumed parameters 

from the range equation [5]. 
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2. CW FM SONAR WITH MATCHED FILTRATION 

Matched filtration sonars can use a variety of sounding signals featuring a high product 

of duration T and spectrum width B. Conventional sonars usually use the pulse signal with 

linear frequency modulation. Silent sonars can replace pulse signals with continuous signals 

comprising periodically repetitive pulses with linear frequency modulation. The changes in 

frequency are shown in Fig. 1 and the spectrum is given in Fig. 2. 

3T 2T T

f0+B/2 

f0-B/2

f(t)

t

f0

     Fig. 1. Changing frequency of the sounding signal     Fig. 2. Amplitude spectrum of a sounding 

                              in a CW FM sonar                  signal (f0 = 10 kHz, B = 1 kHz, T = 10 s) 

Fig. 3 shows the shape of the signal at the output of a matched filter. It is assumed that 

the echo signal is a copy of the sounding signal delayed by to = 3 s  Fig. 4 shows a fragment of 

the signal from Fig. 3 around its maximal value. 

           Fig. 3. Signal at output of matched filter  Fig. 4. Fragment of a signal around its  

         maximal (f0 = 10 kHz, B = 1 kHz, T = 10 s)                       value 

As you can see in Fig.4, the shift of the first zero of the correlation function versus 

delay to= 2 s is 1 ms. The value is equal to the inverse bandwidth B = 1 kHz which is 

consistent with the theoretical results [4]. Value 1/B is at the same time equal to the potential 

resolution of the sonar expressed here with units of time. Resolution expressed with units of 

distance is in this case R = 0.5c/B 0 .75 m which is very good. 
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3. DOPPLER EFFECT, CW FM SONAR WITH MATCHED FILTRATION 

As we know from the theory of matched filtration [4], and successful experiments, the 

Doppler effect has a negative impact on the operation of echolocation systems which use this 

method of detection. It reduces the maximal value of the correlation function and its shift over 

time. With a lower correlation function value, detection is hampered (a lower SNR) and target 

location is misinterpreted as a result of the shift in time of the correlation function maximum. 

The typical underwater acoustic systems are not really affected by either of these disadvantages 

and are acceptable in view of the benefits of matched filtration. The calculations we will be 

presenting further in the article suggest that if we extend signals with frequency modulation, 

the result is a significant change in the shape of the correlation and a strong effect on its 

position on the time scale.  

Let the sounding signal have the following shape: 
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and outside the time range (0, T) it is equal to zero. We take this assumption to simplify the 

analysis and the results of numerical calculations further in the text will show that it has  

a major impact on the conclusions. In the formula above f0 means the carrier frequency of the 

signal, B the width of its spectrum and T is the duration. 

Let us assume that the sonar is stationary and the target is moving at velocity v. Let us 

assume that the target at time t = 0 is x = x0 away from the sonar’s receiver and is emitting  

a signal described with formula (19). The receiver receives a signal which we can write as 

follows: 
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After some simple transformations, we have: 
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where c is sound velocity, t0 = x0/c and e = 1-v/c.

As given in formula (3) the correlation function of the above signal with sounding 

signal takes this shape: 
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Let us introduce a new variable ’= -t0 and the following designations: a = f0-B/T,

b = B/2T. We then have: 

dttbtajetetbajSXrxs })(2exp{)}')]('([2exp{)'( 00  (23) 
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After we have made the operations in the exponents and the elementary transformations, 
we obtain: 

dttbejtbteaej
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We will not be making a significant mistake if we insert e+1  2 and e-1 = -v/c. Having 
limited our interest to the module of the correlation function, we have: 
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As you can see in the formula above the module of the correlation function is the 
Fourier transform of the function describing linear frequency modulation. The equivalent of 

frequency in normal notation of the Fourier transform is variable  which is equal to: 

''2
T
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which is the outcome of reduction e = 1-v/c 1. As you can see, the variable has frequency 
dimension. 

When we insert the above designation, we obtain:
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As you can see in Fig. 2, the spectrum of the linear frequency modulation function is 
almost rectangular and contained between two frequencies of which the first is for time t = 0 
and the second for time t = T (formula 19). In the case in question we have: 
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Hence the cut-off frequencies take the following values: 
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As shown in formula (26) the above frequencies in fact determine the delays of the 

correlation function. They go back to variable which describes the complete delay  = ’+t0

and we obtain: 
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Hence the delay of the centre of the correlation function 0 = ( 1+ 2)/2 is: 
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The additional delay caused by the Doppler effect is approximately equal to: 
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To ensure that target distance error is minimised, it is advisable to keep spectrum B of 
the sounding signal as wide as possible and time T as short as possible. In other words the 
straight lines shown in Fig. 1 should have the biggest possible inclination. As a reminder, 
detection performance improves with extended time T.

The width of the output signal (correlation function) is approximately equal to: 
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As a result of the above reductions, formula (33) shows that for velocity v = 0, the width 

of the correlation function is also equal to zero. In reality the width is then equal to = 1/B.

With no Doppler shift (v = 0) delay  = t0  and formula (27) is reduced as follows: 
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Having calculated the elementary integral, we obtain: 
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This is the expected result consistent with Fig. 4. 

Let us now calculate the shift of the correlation function for data used in Fig.2 and the 
others. By inserting f0 = 10 kHz, B = 1 kHz, T = 10 s and v = 10 ms (c = 1500 m/s) we obtain: 

1 = 2.633 s, 0 = 2.7 s, 2 = 2.766 s. Delays like this lead to major misinterpretations of the 

target distance. The centre of the correlation function is: r0 = 525 m. 
The results of the analysis are consistent with the results of the system’s computer 

simulation. Fig. 5 shows the output signal for the example given above. Fig. 6 shows an 
enlarged fragment of the output signal for target velocity v = 10 m/s. The dotted lines show 
the delays determined from analytical formulas. As you can see, the consistency between 
numerical and analytical calculations is very good. 

Fig. 5. Correlation function of the sounding signal   Fig. 6. A magnified fragment of Fig. 5 
            and echo signal with Doppler shift  
   (f0 = 10 kHz, B = 1 kHz, T = 10 s, v = 10 ms) 
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So far the analysis and simulations tested a simplified model of the sonar with the sounding 
signal and echo signal represented by single pulses. In order to test whether the results can be 
applied to periodical signals as well, the echo signal was replaced with a periodical echo 
signal in the simulation but the sounding signal kept its previous pulse shape. Fig. 7 shows the 
signal at the output of the matched filter for a stationary target. Its enlarged fragment is given 
in Fig. 8. A comparison of Fig. 3 and Fig. 4 shows that the results of the previous analysis can 
be fully applied to periodical echo signals. 

Fig. 7. Signal at output of matched filter of a perio-     Fig. 8 Fragment of a signal around its maximal 

dical echo signal (f0 = 10 kHz, B = 1 kHz, T = 10 s)                            value 

Analogous calculations were made for an echo signal with Doppler shift. The results 
showed that compared to a non-periodical signal the shift halves the height of the sounding 
signal at the output of the matched filter. This effect can be seen in Fig. 9 and 10 which are 
made for the same parameters as in Fig. 5 and Fig. 6. Another result of the comparison is that 
the duration of signals at the output of the matched filter is in both cases identical. 

 Fig. 9. Correlation function of a sounding signal  Fig. 10. A magnified fragment of Fig. 5 

   and periodical echo signal with Doppler shift  

    (f0 = 10 kHz, B = 1 kHz, T = 10 s, v = 10 ms)  

As you can see in the figures above the Doppler effect has one more negative impact.  
It increases the duration of the output signal and reduces its height. With a lower signal at the 
output of the matched filter, the signal to noise ratio decreases which deteriorates detection 
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performance. This is the direct result of formula (10) in which energy Et is proportional to the 
height of the function of the line shown in Fig. 5, Fig. 7 and Fig. 9 and Fig. 9 and 10 where 
the signal with the Doppler shift is significantly smaller.  

Fig. 11 shows the relation between the height of the signal at matched filter output with 

the Doppler shift and the v/c for specific and constant values of the remaining sonar 

parameters. Fig. 12 shows the height of the signal in the function of T for a constant v/c.

  Fig. 11. Normalized maximum values of matched  Fig. 12. Maximum values of matched filter 

filter outpt: a – B = 2 kHz, b – B = 1 kHz, c = 0.5 kHz          output in the function of period T 

                       (f0 = 10 kHz, T = 10 s)         (f0 = 10 kHz, v0 = 10 m/s) 

Charts show that the maximum value of the output signals decrease, when the bandwidth 

of the sounding signal frequency increases. The increase of period T results in increasing of 

the sounding signal energy, and consequently in increasing of amplitude of the signal at the 

output of the matched filter. 

4. CONCLUSIONS 

Matched filtration can be used as an alternative detection method in a CW FM sonar as 

opposed to the conventional method for determining differential frequency between the 

sounding signal and echo signal. Similarly to this method, sonars with matched filtration are 

also affected by the Doppler effect which misestimates the distance to the target and 

deteriorates detection performance. Our preliminary analysis has shown that there are ways to 

stop the negative effects of the Doppler effect partially or entirely by changing the form of 

sounding signals. 
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