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Modeling of one variable and two variables functions can be used in hydroacoustics 
and hydrography i.e. for modeling the vertical distribution of the sound speed in water (one 
variable functions) or sea bottom (two variable functions). There are many mathematics 
methods of modeling one variable functions.

In the paper modeling of the one variable function for the vertical distribution of the 
sound speed in water using rational Bézier functions have been shown.  
 
 

INTRODUCTION 

Polynomial Bézier curves have many advantages in modeling. They are modification  
of curves described in [10,11], which were used for description the sound speed in water. 
Knowledge about vertical distribution of the sound speed in water is essential issue in theory 
of acoustic wave’s propagation [1, 3], determination of the depth using acoustic methods, 
determination of measurement’s accuracy [10] and determination of acoustic wave reflection 
points in bathymetric surveys [3]. 

Many methods were been used for describing the vertical distribution of the sound speed 
in water [4, 5, 6, 7, 10, 11, 12, 13, 14], e.g. Uniform B-Splines, NonUniform Rational  
B-Splines NURBS, Bézier curves and other well known interpolation methods [2]. 
 

1. BÉZIER CURVES AND POLYNOMIALS 

One of Bezier curve definition described it as p curve, when each point of  p(t) can be 
constructed using adequate t: 

– let’s choose in free method a sequence of n+1 points npp ,...,0  and let’s into consideration 

a broken line with these points, 
– now, we divide all n segments of his broken line in established proportion, 
– this proportion can be described by one number parameter t: each section is divided in 

proportion: tt 1: , 
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– next, we receive n points, which are points of another broken line, which consists of 
1n  sections. This process is repeated for obtaining one point. 

Described algorithm is called Casteljau algorithm, when for ]1,0[t  corners are cutted. 
As a result of this process, the broken line makes the curve. The iteration step can be written 
in the form [2, 10]: 
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Start points are called control points, the output broken lines called Bezier control line. 
Looking for de Casteljau algorithm we can observe: 

– Bezier curve is polynomial one: if there are n+1 control points, curve’s coordinates are 
described by polynomials of t variable of the degree not higher than n: so Bezier curve 
term is specific for individual polynomial curve representation, 

– the curve has the convex property: for ]1 ,0[t  a point )(tp  lies on convex line of 

npp ,...,0  points, 

– construction of the curve is affine constant: the picture of npp ,...,0  points in free affine 

transformation determines the picture of the p curve in this transformation, 
– occurs the interpolation of final points of the broken line: 0)0( pp , npp )1( . 

Bernstein polynomials of n – degree are defined by equation [2, 10]: 
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These polynomials are linear independent. They determine the space base of 
polynomials of degree not more than n, because they are  n+1 
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Bernstein polynomials meet recurrent relationship [1]: 
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Polynomial )(0
0 tB  is equal to 1. For each n we also have 1

0 n

nn
, so for i = 0 and 

i = n  foregoing equation results from an agreement: 
 

For n > 1, i = 1,…,n-1 
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Polynomials of higher and higher degrees can be obtained using the pattern, which is 
the generalization of Pascal triangle. 

Turned out, that control points of Bézier curve are coefficients of the curve in Bernstein 
polynomials space: 
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2. MODELING OF RATIONAL BÉZIER COURVES 

Displacement the point pi, like for the polynomial curve, causes displacement of points 
of the curve in this same direction (Fig. 1). Increasing the weight wi causes displacement of 
points of the curve in the pi direction. Precisely, if the curve before and after changing is 
adequately marked p i q, then for each t points p(t), q(t) and pi are collinear (Fig. 2). If the 
weights are increased on the same factor, the the output curve will be obtained. If wi  = 0, then 
changing the vector vi on vi – causes displacement points of the curve in vi direction. 
 

 
Fig. 1. Effect of displacement of the control point and changing its weight 

 

 
 

Fig. 2. Modeling of the rational curve by selecting the vector iv .  
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3. CHARACTERISTICS OF RATIONAL BÉZIER COURVES 

From the description of rational representation of Bézier curve and characteristic 
polynomial one results following characteristics of rational Bézier curves: 
Generalization polynomial curves: If all of weights are equal, so denominator in equation  
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have constant function and the curve is polynomial Bézier one. 

Uniform set of weights: multiplication of all of weights by this same constant (different from 
zero) does not change the curve.

Characteristic of convex surroundings: if all of weights are positive (or not negative), so 
for 1,0t  point p(t) is located in convex surroundings of the control points set. 

Interpolation of final points: nn ppwppw )1(0   ,)0(0 00 . 

Affine invariability: image of the control points set pi in any affine transformation f 
represents (in constant weights) the image of the curve p(t) in this transformation; if in 
representation occurs vectors  vi, so there is necessary to transform them by linear part 
of transformation f. 

 

 
 

Fig. 3. Broken control line of the curve with weights with different marks and broken lines  
of parts with weights with constant marks 

 
Division of the arc on parts: rational de Casteljau algorithm, apart the point p(t), finds 

control points and weights of curve’s parts. One of these arcs is determined by points 
)(i

ip  and weights )(i

iw , and another by points )( in

ip  and weights )( in

iw . Even if initial 

weight coefficients have different marks, in representation of sufficiently short parts all 
of weights have this same mark. 

The curve can be also divided on parts by dividing the uniform curve. Polynomial de 
Casteljau algorithm is easier and more convenient then rational one. 
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4. RESULTS 

Sound speed in water have been measured during bathymetric soundings in Gdansk 
Harbour, October, 2010. The area of the sounding have been presented below. Vertical 
distribution of the sound speed in water have been measured using CTD probe in one hour 
intervals: 12:00, 13:00, 14:00. 

 

 
 

Fig. 4. The area of sound speed measurements 

sound speed 
measurements 
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Fig. 5. Real and approximated vertical distributions of the sound speed in water  

– 31-st of October, 2010: 12:00, 13:00 and 14:00 
 

 
Fig. 6. Short parts of vertical distributions of sound speed in water 
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5. CONCLUSIONS 

Polynomials Bézier curves hale many advantages in modeling but they have also 
several disadvantages. These disadvantages are in circles and ellipse modeling. Only one of 
polynomial circle is parabola. 

Presented mathematical algorithm of using Bézier curves for presentation the sound 
speed in water is suitable for hydroacoustis and hydrography.  
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