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In the article the essence of uniform rectangular Bézier pieces have been shown. These 
issues are essential during creation the digital terrain model DTM. For creation the bottom 
model bathymetric surveys of Motlawa River have been used. The visualization of the bottom 
using uniform rectangular Bézier pieces has been presented. 
 
 

INTRODUCTION 

Modeling of surfaces in hydroacoustics and hydrography have many applications, e.g. 
for modeling of sea bottom and surface of constant sound speed in water [2, 10, 12]. There are 
used well known methods and developed new algorithms, which are used in computer 
graphics [1, 3, 4, 5, 8, 9, 11, 13, 14, 15]. 
 

1. DETERMINATION OF THE PIECE 

Rectangular Bézier pieces (aka tensor Bézier pieces) of n – degree in relation to u 
variable and m – degree in relation to v variable ((m, n) – degree) are described by the 
equation [1]: 
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For determination the piece of (m, n) – degree, there is necessary to give (n+1)(m+1) control 
points of ji,p . The set of segments connecting control points, which only one index differs from 1, 

is called control frame of the piece. In this control frame we distinguish rows, i.e. broken lines with 

njj pp ,...,0  points for established j, and columns, i.e. broken lines with imi pp ,...,0  points for 

established i. 
The method for determination the piece – using tensor base created from functions used 

for determination Bézier curves – makes possible to use for rectangular Bézier pieces all of 
theorems and algorithms connected with curves. We can observe, that: 
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1)(B  determine distribution of one. The picture of control frame in any affine 

transformation determines the picture of the piece in this transformation, because 
determination them is independent from control points’ selection of the piece, 

– because on the section [0,1] Bernstein polynomials are non-negative, so functions of 
tensor base are non-negative in the rectangle [0,1] [0,1], therefore point ),( vup  for 

]1,0[,vu  is in convex border of control points set, 

– because 0)0()0( m

j

n

i BB  for 0i  or 0j , so 00)0,0( pp . Similarly, in remaining 

corners: 0)0,1( npp , m0)1,0( pp , nmpp )1,1( . Extreme rows and columns of the 
control frame determine border curves of the piece. 

 
2. RATIONAL BÉZIER PIECE 

Definition of the Bézier piece is generalization of qualification of polynomial Bézier piece. 
Relationship between them is the analogy to relationship between rational and polynomial Bézier 
curves. To control points ji ,p , which represents polynomial Bézier piece, assigned weight 

coefficients (or weights) jiw , . Polynomial Bezier piece of (n, m) degree, described by equation: 
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can be modeled by selection control points and weights. 
 

 
Fig. 1. Polynomial Bézier piece and its control net. Apart 101,2w  and 

100

1
2,2w  all of piece’s weights are 1  

 

If 0, jiw , then point ji ,p  has not influence on the piece. Apart control points with zero 

weights can be used control vectors jiv ,  and equation: 
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Polynomial piece in 3D space has the uniform representation, which determines the 
polynomial plate in the space of homogenous co-ordinations 4 . The point 3Ep , with co-

ordinations x, y, z, is represented by any vector 4,, T
ZYXP  such as 

W

X
x x, 

W
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y , 
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z . So polynomial Bézier piece 
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with control points 
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is one of many rational pieces representing piece p. 
 

3. BASIC CHARACTERISTICS OF RATIONAL PIECES 

Characteristics of rational pieces can be easy justified on the basis of characteristics of 
polynomial and rational Bézier curves and polynomial rectangular pieces. 

Relationship between rational piece and its control net is affine invariable. 
Characteristics of  convex surroundings: If weights are positive, then for 1,01,0),( vu  

point ),( vup  is located inside of convex surroundings of the points’ set ji,p . 

Interpolation of corners of the net and edge curves: Corner points of control net are corners  

of the rational piece. Points in extreme rows and columns of the net with suitable weights 

represent rational Bézier curves, which are placed on the edge of the piece. 
Non hodograph characteristic: Vectors of particle derivatives of rational Bézier piece usually 

are not linear combination of vectors )( ,,1,1 jijiji ppp  and )( ,1,,2 jijiji ppp  with 

positive coefficients, because in general case rational Bézier piece is not tensor piece, i.e. 

there are not functions )(ufi  and )(vg j , that 
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naa ,...,0 , mbb ,...,0 , that jiji baw, , then rational Bézier piece can be written in the form: 
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If ia  and jb  are positive, then on the segment [0,1] functions 
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of rational Bézier curves with all positive weights, can be proved that rational Bézier pieces 

have characteristic of hodograph – e.g. for ]1,0[, vu  vector ),( vuup  is linear combination of 

vectors ji ,1 p  with nonnegative coefficients. 

Determination of points and division the rational piece can be reduced to determination of 
points and division the uniform rational piece. Generally, there rational de Casteljau 
algorithm can not be used for columns and rows of control net. It is possible if the piece 
can be presented in the tensor form, i.e. when exist numbers ia  and jb , that jiji baw , . 

Increasing of the degree can be realized by presentation the uniform piece in the base of 
Bernstein polynomials higher degree or multiplying it by any polynomial. 

Particle derivatives of k-th degree along the edge curve depend of k+1 extreme rows or 
columns of the net. They can be calculated using rational representation of the piece. 

 
4. RESULTS 

Hydrographic surveys have been realized using singlebeam echosounder Simrad EA400 
with frequencies: 50kHz and 200kHz on Motlawa River in Gdansk.  

 

 
 

Fig. 2. Profile sheet 
 
The area of surveys with profiles have been presented in Fig. 2, bathymetric sheet has 

been presented in Fig. 4 and spatial presentation of the bottom has been presented in Fig. 4. 
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Fig. 3. Bathymetric sheet 
 

 
Fig. 4. 3D visualization of the sea bottom 

 

5. CONCLUSIONS 

Rational rectangular Bézier pieces are another method used in modeling of surfaces and 

it is generalization of polynomial Bézier piece. Relationship between them is similar to 

rational and polynomial Bézier curves. 
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Presented method has been successfully used for presentation of the bottom on the basis 

of hydrographic surveys using singlebeam echosounder. 
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