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In the paper, the approach to seafloor characterisation is presented. The multibeam sonars, 

besides their well verified and widely used applications like high resolution bathymetry and 
underwater object detection and imaging, are also the promising tool in seafloor characterization 
and classification, having several advantages over conventional single beam echosounders. The 
proposed approach relies on the combined, concurrent use of several techniques of multibeam 
sonar data processing. The first one is based on constructing the grey-level sonar images of seabed 
using the backscattering strength calculated for the echoes received in the consecutive beams. 
Then, the set of parameters describing the local region of sonar image is calculated. These include 
both the first and the second order statistics of the grey level, and the texture analysis. The second 
technique utilises the 3D model of the seabed surface, which is constructed as a set of (x, y, z) 
points using the detected bottom range for each beam in the multibeam system seafloor imaging 
procedure. For the local region of seabed surface, the descriptors like rms height and 
autocorrelation radius are calculated. The third technique assumes the use of a set of parameters 
of the multibeam echo envelope, similarly as in single beam classification. The parameters include 
echo energy and its statistics, as well as the set of echo shape descriptors, and are calculated for 
each beam allowing the estimation of their dependence on seafloor incident angle. Then, for 
selected parameters, the characteristic features quantitatively describing their angular 
dependence, like slope, or range, are calculated. Finally, the features obtained by these  
3 techniques have been combined together and used in seabed supervised classification procedure 
based on standard classifiers. The proposed method has been tested using multibeam data records 
acquired from several bottom types in the Gulf of Gda sk region. The obtained results show that 
application of the proposed combined approach improves the classification performance in 
comparison with those of using only the one scheme of seafloor multibeam data processing. 
 

INTRODUCTION 

The multibeam sonars, besides their well verified and widely used applications like high 
resolution bathymetry and underwater object detection and imaging, are also the promising 
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tool in seafloor characterisation and classification, having several advantages over conventional 
single beam echosounders. However, the efficient and reliable methods of multibeam data 
processing for seabed classification have not been stated and verified yet.  

The proposed approach relies on the combined use of three different techniques. The 

first one, introduced by the authors lately [1], is based on constructing the grey-level sonar 

images of seabed extracted from echoes received in the consecutive pings. Then, the set  

of parameters describing the local region of sonar image is calculated. The second technique 

utilises the 3
D
 model of the seabed surface, which is constructed as a set of (x, y, z) points 

using the detected bottom range for each beam. For the local region of the obtained seabed 

surface model, the descriptors like rms height and autocorrelation radius are calculated. The 

third technique, also introduced by the authors [2], assumes the use of a set of parameters  

of the multibeam echo envelope and investigating the dependence of their values on the beam 

incident angle. 

 

1. MATERIALS AND METHODS 

The scheme of the applied approach was shown in Fig. 1. In the first technique,  

i.e. Method 1 in Fig. 1, the grey-level sonar images of seabed surface are utilised, like, for 

instance, in [3]. Usually, such images are generated by a multibeam sonar firmware. Next,  

a set of parameters describing the local region of sonar image is calculated for each bottom 

type. This step  includes calculation of the following: 

1. Basic statistical parameters describing the grey level distribution, i.e. local mean, standard 

deviation (STD), skewness, and kurtosis. 

2. Slope of the autocorrelation function of a grey level (in along track direction) approximated 

for a local region of the image (SL_AUTC). 

3. Parameters used in the texture analysis based on the Grey-Level CO-occurrence Matrix 

(GLCM) of a sonar image local region: entropy (ENTR) and local homogeneity 

(HOMOG). The description of this technique may be found for instance in [4]. 

In the second technique of multibeam sonar data processing (Method 2 in Fig. 1), the 3
D
 

model of the seabed surface is utilised. It is constructed as a set of (x, y, z) points using the 

detected bottom range for each beam within the multibeam system seafloor imaging 

procedure. Next, for the local region of the constructed seabed surface, the following 

descriptors are calculated: rms height (SURF_RMS), skewness of height (SURF_SKEW), 

kurtosis of height (SURF_KURT), and the slope of the seabed surface autocorrelation function 

(SURF_AUTC). 

In the third technique of multibeam sonar data processing (Method 3 in Fig. 1), the set 

of echo signal envelopes corresponding to particular beams is obtained as a multibeam sonar 

output. After detection of a bottom echo in the received signal, the set of echo parameters is 

calculated for an appropriate part of each beam echo [2]. In the presented work, two echo 

parameters are used in further processing, namely: 

1. The normalised moment of inertia I [5] of the echo envelope, with respect to the axis 

containing its gravity center. 

2. Fractal dimension D of an echo envelope, interpreted as a measure of its shape composedness. 

It is calculated as a box dimension approximation of a Haussdorff dimension, as described 

in [2]. 

Next, for each seabed type, the dependence of I and D parameter values on the beam 

incident angle is estimated. The estimated angular dependences for a set of multibeam echo 

parameters may be found in [2]. 
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In the context of the classification procedure construction and testing, the following 

quantities are calculated in the next step for each sounding (swath), based on the I and D 

angular dependencies: 

– the approximated slope of the angular dependence of the beam echo moment of inertia 

I( ), for the angle range of [2 , 17 ], 

– the approximated slope of the angular dependence of the beam echo fractal dimension 

D( ), for the angle range of [4 , 19 ]. 
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Fig. 1. The concept of three combined methods of seafloor classification using multibeam sonar 

 

Finally, using the results obtained by both techniques described above, the 2
D
 plots  

of calculated values for selected pairs of echo or image parameters were constructed. The 

obtained results are presented in the next section. 

The data used in the experimental verification of the proposed approach were acquired 

by the Kongsberg EM 3002 sonar in the Gda sk Bay region of the Baltic Sea in September 

2007. Several sites of different seabed types were investigated, but the results of the current 

investigation are presented and discussed for 4 selected data measure sites corresponding to 4 

seabed types: mud, anthropogenic sand and mud, fine grained sand and coarse grained sand. 

The information about seafloor type was taken from the geological map of the Gda sk Bay. 
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The sonar operating frequency was 300 kHz, the width of beams: 1.5° x 1.5°, the 
transmitted pulse length: 0.15 ms, the echo sampling rate: 14.3 kHz. The bottom depth was in 
a range between 10 m and 100 m. Approximately, 1000 swaths from each of four seafloor 
types were processed. For each swath, 160 beams covered the angle sector from –65° to 65°. 
In the first (‘image’) technique, the seabed sonar image part corresponding to the beam angle 
sector between 15° and 30° was selected for processing. In the estimation of mean, standard 
deviation, skewness and kurtosis of an image grey level, the size of a local image region was 
chosen as 11 x 11 pixels. The same local region size was used for entropy and local 
homogeneity calculation based on GLCM. For GLCM calculation, the image was quantised 
on 10 grey levels. In the estimation of the autocorrelation function slope, the used window 
size was 61 pixels and the maximum lag was 3 pixels. In the second technique of sonar data 
processing, the seabed surface part corresponding to the beam angle sector between 15° and 
50° was selected for processing. In the estimation of rms height, skewness and kurtosis, the 
size of a local image region was chosen as 11 x 21 pixels. In the estimation of seabed surface 
autocorrelation function slope, the used window size was 21 pixels and the maximum lag was 
3 pixels. In the third technique, i.e. echo parameter angular dependence estimation, the beam 
echoes corresponding to angular sector from –25° to 25° were selected for further processing 
and parameter calculation.  
 

2. RESULTS 

The 2
D
 plots of selected pairs of parameter values are presented in Fig. 2 with true 

seabed type of a single data point indicated by colour and shape. The 2
D
 plot of the (STD, 

SL_AUTC) pairs is presented in Fig. 2a. The plot of the (ENTR, HOMOG) pairs calculated 
using GLCMs technique is presented in Fig. 2b.  The 2

D
 plot of the (SURF_RMS, SURF_AUTC) 

pairs is presented in Fig. 2c. The plot of the (SURF_SKEW, SURF_KURT) pairs is presented 

in Fig. 2d. The 2
D
 plot of the (I( ) slope, D( ) slope) pairs calculated using multibeam echoes 

is presented in Fig. 2e. 
For comparison, the calculated values of the echo duration time T for normal incidence 

as well as of the echo energy E for normal incidence for the data from the same soundings, 
was also analysed in the similar way as other results. The results for these quantities, 
corresponding to those used often in the single beam seabed classification, are presented in  
a 2

D
 plot of the (T(0°), E(0°)) pairs in Fig. 2f. 

Finally, Fig. 3 presents of I( ) slope calculation results combined with SL_AUTC 
calculation results, e.g. one ‘echo’ parameter combined with one ‘image’ parameter. It is 
visible that in Fig. 2a), b), c) and e) cases, and especially in the case presented in Fig. 3, the 
seabed classes are separable easier than in a normal incidence parameters T(0°), E(0°) case – 
Fig 2f. It proves the advantages of the presented novel approaches. 

It is visible that in the cases shown in Fig. 2a), b), c), d) and e), the distinction between 
some pairs of seabed types (classes) is easier, while for others it is more difficult. It may be 
also noticed that ENTR and HOMOG are highly, negatively correlated with each other, what 
is quite understandable. 

It must be pointed out that while using the ‘echo’ (I( ) slope, D( ) slope) pair of parameters 
(what has already been presented partially in [2]) allows for very good separation of mud 
from 3 other seabed types – Fig. 2e), at the same time, using the ‘image’ parameter (STD, 
SL_AUTC) pair (Fig. 2a) makes it possible to distinct clearly between anthropogenic sand and 
mud and the other types, especially due to differences in local autocorrelation slope values. 

Finally, using the I( ) slope combined with the SL_AUTC calculation results, i.e. one ‘echo’ 
parameter combined with one ‘image’ parameter, allows for very good separation of almost 
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all seabed classes, with the only exception of fine grained sand mixed with coarse grained 
sand – Fig. 6. However, these two bottom types are very similar to each other. 
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Fig. 2. 2D plots of pairs of calculated parameter values for 4 investigated seabed types: mud x letters), 

anthropogenic sand and mud (circles), fine grained sand (crosses) and coarse grained sand (stars) 
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Fig. 3. 2D plots of (I( ) slope, SL_AUTC) calculated parameter values for 4 investigated seabed  

types: mud (x letters), anthropogenic sand and mud (circles), fine grained sand (crosses)  

and coarse grained sand (stars) 

 

The observations reported above were also confirmed by the results of testing of an 

automatic classifier operating on features selected from those presented in Fig. 2 and 3. The 

supervised classification procedure based on the training set containing the 20% of data for 

each seabed type was applied. The simple minimum distance classifier with Euclidean metrics 

was used. In the first ‘echo’ case (dataset 1), the (I( ) slope, D( ) slope) pairs were used as 

the descriptors of classified objects (e.g. bottom types), what corresponds with the plot in Fig. 2e. 

In the second ‘surface’ case (dataset 2), the (SURF_RMS, SURF_AUTC) pairs were used as 

the descriptors of bottom types, what corresponds with the plot shown in Fig. 2c. In the third 

‘image’ case, (STD, SL_AUTC) pairs were used as the descriptors of bottom types, what 

corresponds with the plot shown in Fig. 2a. In the fourth case (dataset 4), the (I( ) slope, 

SL_AUTC) pairs were used as the descriptors of bottom types – the plot shown in Fig. 3. 

Finally, in the fifth case (dataset 5), the number of parameters describing the single object was 

extended to 3, namely, the triplet (I( ) slope, STD, SL_AUTC) was used. 

The classification results for the dataset 1, 2, 3, 4 and 5 are presented in the form  

of confusion matrices in Table 1, 2, 3, 4 and 5 respectively. 

 
Table 1. Confusion matrix for minimum distance classification of 4 seabed types  

using the data presented in Fig. 2e (I( ) slope and D( ) slope) as features,  

with 20% of data treated as the training set 
 

Assigned class 

True class 

Mud
Anthr. sand 

and mud 

Fine grained 

sand

Coarse

grained

sand

Mud 100% 0% 0% 0% 

Anthr. sand and mud 1.25% 43.75% 7.5% 47.5% 

Fine grained sand 1.25% 17.5% 50% 31.25% 

Coarse grained sand 0% 15% 15.25% 68.75% 

Correct classifications – total: 65.63% 
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Table 2. Confusion matrix for minimum distance classification of 4 seabed types using the data 

presented in Fig. 2c (SURF_RMS, SURF_AUTC) as features, with 20% of data treated as the training set 

Assigned class 

True class 

Mud
Anthr. sand 

and mud 

Fine grained 

sand

Coarse

grained sand 

Mud 98.75% 1.25% 5% 6.25% 

Anthr. sand and mud 0% 70% 13.75% 37.5% 

Fine grained sand 1.25% 12.5% 68.75% 8.75% 

Coarse grained sand 0% 16.25% 12.5% 47.5%

Correct classifications – total: 71.25% 

 

Table 3. Confusion matrix for minimum distance classification of 4 seabed types using the data 

presented in Fig. 2a (STD and SL_AUTC) as features, with 20% of data treatedas the training set

Assigned class 

True class 

Mud
Anthr. sand 

and mud 

Fine grained 

sand

Coarse

grained sand 

Mud 92.5% 0% 0% 7.5% 

Anthr. sand and mud 0% 100% 0% 0% 

Fine grained sand 0% 0% 86.25% 13.75% 

Coarse grained sand 5% 0% 1.25% 93.75% 

Correct classifications – total: 93.13% 

 

Table 4. Confusion matrix for minimum distance classification of 4 seabed types using the data 

presented in Fig. 3 (I( ) slope and SL_AUTC) as features, with 20% of data treated as the training set 

Assigned class 

True class 

Mud
Anthr. sand 

and mud 

Fine grained 

sand

Coarse

grained sand 

Mud 100% 0% 0% 0% 

Anthr. sand and mud 0% 100% 0% 0% 

Fine grained sand 1.25% 0% 83.75% 15% 

Coarse grained sand 0% 0% 8.75% 91.25% 

Correct classifications – total: 93.75% 

 

Table 5. Confusion matrix for minimum distance classification of 4 seabed types with application  

of triplets of features: I( ) slope, STD and SL_AUTC, with 20% of data treated as the training set 

Assigned class 

True class 

Mud
Anthr. sand 

and mud 

Fine grained 

sand

Coarse

grained sand 

Mud 100% 0% 0% 0% 

Anthr. sand and mud 0% 100% 0% 0% 

Fine grained sand 1.25% 0% 90% 8.75% 

Coarse grained sand 0% 0% 1.25% 98.75% 

Correct classifications – total: 97.19% 
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The obtained classification results are in line with expectations which can be made 

according to contents of the plots shown above. The worst classification result was in the case 

of the dataset 1 – 65.63% total correct classifications. It is connected with quite strong 

overlapping of (I( ) slope, D( ) slope) values distributions for 3 of 4 seabed types – Fig. 2e. 

For the dataset 2 case – (SURF_RMS, SURF_AUTC) pair, the results are slightly better – 

71.25% total correct classifications. In this case, one may predict that the use of more 

advanced classification algorithm could improve the classification results. For the dataset 3 

case, i.e. with the use of (STD and SL_AUTC) parameters describing the local properties of  

a sonar image grey level, the classification results are significantly better – 93.13% correct 

classifications. The further improvement of the classification performance is visible with 

respect to the results obtained for the dataset 4, where the combination of one ‘echo’ and one 

‘image’ parameter is used. Although the total percentage of the correct classifications: 

93.75% is not significantly higher than in the previous case, it should be noticed that two 

bottom types – mud and anthropogenic sand and mud, are classified with 100% correctness 

even with such a primitive type of a classifier used. This is due to very good separation of 

those 2 seabed classes. Finally, the best classification result was obtained in the dataset 5 

case: 97.19% total correct classifications. In this case, the classification was performed in the 

3-dimensional parameter space, containing one ‘echo’ and two ‘image’ parameters. 

 

3. CONCLUSIONS 

The approach to multibeam seafloor characterisation, which relies on the combined, 

concurrent use of three different techniques of multibeam sonar data processing, was presented. 

It has been primarily justified that all techniques are useful in seafloor characterisation. What 

is more, the obtained results show that the combination of two techniques – signal processing, 

and image processing, improves the seabed classification performance. However, it should be 

pointed out that in this investigation, the processed experimental datasets were not too large, 

and the information about seafloor type was obtained using the geological map of the region, 

which is characterised by a poor spatial resolution. To obtain more accurate results, the 

verification of the proposed approaches with use of larger amount of experimental data, as 

well as with application of a more reliable ground truthing, is needed. 
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