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The aim of the paper is a theoretical analysis of acoustic waves propagation through  

a bubble layer. The mathematical model of the pressure propagation in bubbly liquid layer is 

constructed by the linear non-dissipative wave and the Rayleigh-Plesset equations. The 

acoustic pressure field inside the layer, the reflected and transmitted waves, and suitable 

power spectral density are studied. Numerical analysis is carried out for different layer 

thicknesses, different values of physical parameters and generated signals. Some results of 

numerical investigations are also presented.

INTRODUCTION

The wave generation and propagation inside the layers with different physical properties 

is a very important problem in practice. The known mathematical models of this problem 

consist of a system of two differential equations. The first one is the linear non-dissipative 

wave equation which describes acoustic pressure changes in the bubble layer [3]. The second 

one is an equation which allows to predict the bubble radius changes, or equivalently, the 

bubble volume variation. Our mathematical model is based on the Rayleigh-Plesset equation, 

which allows to analyze radius changes of a bubble. 

In the paper we present a mathematical model and the results of numerical investigation 

of nonlinear waves propagation in a bubbly liquid layer obtained by using own computer 

programs. 

1. MATHEMATICAL MODEL 

We assume that plane layer with spherical bubbles of the same size and uniformly 

distributed is placed between 0x  and Lx . The media outside the layer are considered to 

be linear. The acoustic field is the sum of incident ip  and reflected rp  waves for 0x .

When Lx , only transmitted wave tp  is propagated. 
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The mathematical model of the acoustic pressure p  propagated inside the layer is built 

on the basis of linear non-dissipative wave equation [2]: 
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where 0c  is sound speed of water, 0 is the density of water at the equilibrium state,  is the 

local fraction of volume occupied by the gas. Assuming a constant number N of air bubbles 

per unit volume, the volume fraction is given by 
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where R  is the instantaneous radius of the bubbles.

The local bubble radius )(tR  is calculated from the Rayleigh - Plesset equation
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where vp  is gas and vapor pressure inside a bubble, statp  is ambient static pressure, )(tP  is 

incident signal acoustic pressure, 0R  is the equilibrium bubble radius,  is angular 

frequency,  is polytropic exponent of gas,  is surface tension coefficient, 

vstatg ppRp 02 ,  is the total damping constant which is the sum of three 

components thviscrad  where 00 cRrad  is the acoustic radiation damping 

constant, 2

004 Rvisc  is the viscous damping constant, th  is damping constant due to 

thermal effects and  is the coefficient of molecular viscosity of seawater. 

 It is important to notice that the bubble radius R  and pressure P  in the Rayleigh-

Plesset equation (2) are functions of time variable t  only. In fact, we consider them as 

functions of two coordinates: the time coordinate t  and the one-dimensional coordinate x

respectively. To be precise we put ),( txp  instead of )(tP .

The initial conditions for 0x are as follows: 
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To complete the formulation of our problem, boundary conditions are defined. At the 

layer boundaries 0x  and Lx  the pressure should be continuous, which leads to 
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Additionally, taking into account the continuity of velocity we introduce two boundary 

conditions [1]: 
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Next, we consider two situations. Assuming that harmonic signal is generated, we have 

an incident wave  
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where sT  is the signal duration. When two different frequency waves are generated then for 

0x  we define 
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When density and sound speed at the bubble layer and surrounded medium are different 

then equations (1), (2) and the boundary conditions must be modified. While 0c  and 0  still 

denote the speed of sound and density in water without bubbles equations (1) and (2) are 

modified by replacing 0c  and 0  with the sound speed Lc  and density L  in the layer 

respectively. Moreover, the boundary condition at 0x has the form 
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Similarly, at Lx we find 
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We are looking for the solution of our problem for ],0[ Lx  and ],0[ maxTt . To solve the 

problem nodal points are defined as follows: tntxix ni , , where xNLx / ,

tNTt /max , i=0,1,…,Nx, n=0,1,…,Nt. As a result of numerical calculations we obtain acoustic 

pressure ),(, nini txpp  and bubble radius ),(, nini txRR  at nodal points. After calculating mip ,

and miR ,  for nm  we can compute 1,niR  using equation (2) and the pressure 1,nip  using 

equation (1), i.e. we can calculate bubble radius and pressure at time 1ntt if we know the values 

of these functions for ntt . The finite-difference method was employed to solve equation (1) 

while equation (2) was solved using the classical Runge-Kutta method. 
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2. RESULTS OF NUMERICAL INVESTIGATIONS 

The first step of our theoretical analysis was to study harmonic wave propagation in 

bubble layer. We started with examination of correctness of proposed model. Figure 1 

presents the incident and reflected waves calculated numerically assuming that the harmonic 

signal (frequency f = 30 kHz, amplitude PA = 20 kPa) with the rectangular window is 

propagated in the layer of thickness 3L . We put the sound speeds c0 = 1450 m/s and  

cL = 1230 m/s, density 0 = 1000 kg/m
3
. Pressure changes calculated for fixed points inside 

the layer are shown in Figure 2. Calculations were carried out assuming that volume fraction 

0 . It is equivalent to the situation when only linear effects are considered. 

Fig. 1. Incident (left figure) and reflected (right figure) waves: 0

Fig. 2. Pressure as a function of time inside layer at fixed bubble layer points: 0
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Fig. 3. Reflected (on the left) and transmitted (on the right) waves: 610

The reflected wave obtained for volume fraction 610  is shown in Figure 3 (on the 

left). The result obtained for transmitted wave ( Lx ) is given on the right of Figure 3. 

The results presented so far were obtained assuming short duration of generated signal. 

Figure 4 shows a reflected wave and its power spectral density for duration of incident wave 

Ts = 3 ms (Tmax = 10 ms). All parameters except for duration and investigated time interval are 

the same as used earlier.  

Fig. 4. Reflected wave and power spectral density: 610

Different frequency interaction problem is also very important in practice. Examples of 

numerical calculations related to this problem are presented below. Figure 5 displays reflected 

wave and power spectral density obtained as a result of calculations assuming that primary 

wave is the sum of two harmonic waves with frequencies f1 = 30 kHz and f = 33kHz 

respectively, and the same amplitudes PA = 20 kPa. Pressure and power spectral density at 

fixed bubble layer points ( 21,3L ) are shown in Figure 6. The results presented in 

Figure 6 were achieved for volume fraction 610 . Figure 7 presents power spectral density 

of reflected and transmitted waves calculated for 810 . Similar results obtained for 
510  are shown in Figure 8. The figure following Figure 8 represents power spectral 

density of reflected wave when 610  and the bubble layer thickness 13L .
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Fig. 5. Reflected wave and power spectral density: 610

Fig. 6. Pressure inside layer and power spectral density at fixed bubble layer points: 610
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Fig. 7. Power spectral density of reflected (on the left) and transmitted (on the right) waves: 810

Fig. 8. Power spectral density of reflected (on the left) and transmitted (on the right) waves: 510

Fig. 9. Power spectral density of reflected wave : 610 , 13L

A theoretical analysis was carried out for different values of physical parameters. Examples 

of results obtained for different bubble distributions and layer thicknesses have been presented 

above. The last figure demonstrates a reflected wave and its power spectral density obtained for 

water density 0 = 1000 kg/m
3
 and density inside the layer L = 1200 kg/m

3
.
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Fig. 10. Reflected wave and power spectral density: 610 , L = 1200 kg/m3

3. CONCLUSIONS 

The nonlinear acoustic waves propagation in one-dimensional bubbly liquid layer was 

considered and its mathematical model presented. The linear non-dissipative wave equation 

was solved numerically by employing the finite-difference method. The Rayleigh-Plesset 

equation was solved using classical Runge-Kutta method of order four. Some results of 

theoretical investigation were also discussed.  

The proposed in this paper mathematical model can be used to study wave propagation 

for different signals propagated in media with different physical parameters. 

It is worth mentioning that a correct choice of physical parameters as well as a choice  

of values of numerical parameters are very important in the process of theoretical 

investigation as they influence accuracy and correctness of results.

All presented in this paper results were obtained assuming that one bubble layer is 

surrounded by media with different physical properties. It is not difficult to extend this model 

to the case of more than one layer. 
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