PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wykorzystanie ditlenku tytanu aktywowanego światłem do oczyszczania powietrza z zanieczyszczeń organicznych i nieorganicznych

Identyfikatory
Warianty tytułu
EN
The titanum dioxide photocatalytic degradation of inorganic and organic air pollutants
Języki publikacji
PL
Abstrakty
PL
Niniejszy artykuł stanowi przegląd literatury dotyczącej wykorzystania fotokatalitycznych właściwości tytanu IV, w procesach oczyszczania powietrza z zanieczyszczeń organicznych i nieorganicznych, pochodzących z różnych źródeł. W pierwszej części pracy przedstawiono podstawy teoretyczne procesu fotokatalizy, z uwzględnieniem właściwości fizykochemicznych TiO2. W części drugiej omówiono wpływ materiałów budowlanych, zawierających ditlenek tytanu na zmniejszenie zanieczyszczeń w środowisku zewnętrznym i na poziom tzw. gazów cieplarnianych. Dokonano również oceny potencjalnych możliwości zastosowania procesów fotokatalitycznych na większą skalę. Kolejny rozdział poświęcono sposobom oczyszczania powietrza wewnętrznego. Szczególną uwagę zwrócono na filtry wewnętrzne oraz materiały samoczyszczące i samodezynfekujące, które mogą się przyczynić do poprawy jakości powietrza i życia w budynkach użyteczności publicznej takich jak: szkoły, przedszkola biblioteki, szpitale itp.
EN
The paper presents a review of literature on the application of light-activated titanium dioxide to destruct volatile organic and inorganic compounds in indoor and outdoor air. In the first part of the article the fundamentals of the photocatalysis are presented. The second part is focused on the major applications of TiO2-based photocatalytic building materials taking into account their impact on the reduction of environmental pollution, self-cleaning and self-disinfecting. Some recommendations are given for the future work concerning the evaluation of titanium dioxide performance aiming at the reduction of the smog and greenhouse gases problems in a large scale. The ability of photocatalytic indoor paints and filters to reduce chemical indoor air impurities and odours is presented. Furthermore, practical applications of various photocatalytic products containing TiO2 for indoor air purification in public buildings such as schools, libraries, hospitals etc. are shown.
Twórcy
  • Instytut Technologii Chemicznej i Inżynierii Środowiska, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie ul. Pułaskiego 10, 70-322 Szczecin, agata@erb.pl
Bibliografia
  • 1. Kośmider J., Mazur-Chrzanowska B., Wyszyński B., Odory, Wydawnictwo Naukowe PWN, Warszawa, 2001.
  • 2. Mo J., Zhang Y., Lamson J.J., Zhao R., Photocatalytic purification of volatile organic compounds in indoor air: a literature review., Atmospheric Environment, 43: 2229-2246, 2009.
  • 3. Hüsken G., Hunger M., Brouwers H.J.H., Experimental study of photocatalytic concrete products for air purification., Building and Environment, 44: 2463-2474, 2009.
  • 4. Zhao J., Yang X., Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment, 38: 645-654, 2003.
  • 5. Herrmann J.M., Photocatalysis fundamentals revisited to avoid several misconceptions., Applied Catalysis B: Environmental, 99 (3-4): 461-468, 2010.
  • 6. Mills A., Le Hunte S., An overview of semiconductor photocatalysis., Journal of Photochemistry and Photobiology A: Chemistry, 108: 1-35, 1997.
  • 7. Carp O., Huisman C.L., Reller A., Photoinduced reactivity of titanium dioxide., Progress in Solid State Chemistry, 32 (1-2): 33-177, 2004.
  • 8. Anpo M. Utilization of TiO2 photocatalysts in green chemistry., Pure Applied Chemistry, 72 (7): 1265-1270, 2000.
  • 9. Blake D.M., Maness P.C., Huang Z., Wolfrum E.J., Huang J., Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells., Separation Purification Methods, 28(1): 1-50.,1999.
  • 10. Benedix R., Dehn F., Quaas J., Orgass M., Application of titanium dioxide photocatalysis to create self-cleaning building materials., Lacer 5: 157-168, 2000.
  • 11. Allen N.S., Edge M., Sandoval G., Verran J., Stratton J., Maltby J., Photocatalytic coatings for environmental applications., Journal of Photochemistry and Photobiology 81(2): 279-290, 2005.
  • 12. Malato S., Blanco J., Vidal A., Richter C., Photocatalysis with solar energy at a pilot plant scale: an overview., Applied Catalysis B: Environmental, 37(1): 1-15, 2000.
  • 13. Dubrovinsky L.S., Dubrovinskaia N.A., Swamy V., Muscat J., Harrison N.M., Ahuja R., Holm B., Johansson B., Materials science: the hardest known oxide., Nature 410: 653-654, 2001.
  • 14. Kapinus E.I., Khalyavka T.A. Shimanovskaya V.V., Viktorova T.I., Streleko V., Photocatalytic activity of spectro-pure titanium dioxide: effects of crystalline structure, specific surface area and sorption properties., International Journal Photoenergy 5 (3): 159-166, 2003.
  • 15. Lubkowski K., Grzmil B., Markowska-Szczupak A., Tymejczyk A. Właściwości fotokatalityczne jako istotny parametr jakościowy pigmentów ditlenku tytanu., Towarozncze Problemy Jakości, 1: 82-91, 2009.
  • 16. Othani B., Photocatalysis A to Z - what we know and what we do not know in a scientific sense, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11(4): 157-178, 2010.
  • 17. Yu Q.L., Ballari M.M., H.J.H. Brouwers., Indoor air purification using heterogeneous photocatalytic oxidation. Part II kinetic study., Applied Catalysis B: Environmental, 99: 58-65, 2010.
  • 18. Mengyue Z., Shifu C., Yaowu T. Photocatalytic degradation of organophosphorous pesticides using thin films of TiO2., J. Chemical Technology & Biotechnology, 64: 339-344, 1995.
  • 19. Achilleos A., Hapeshia E., Xekoukoulotakis N.P., Mantzavinosb D., Fatta-Kassinosa D., Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis., Chemical Engineering Journal, 161: 53–59, 2010.
  • 20. Chong M.N. Jin B., Chow C.W.K., Saint C., Recent developments in photocatalytic water treatment technology: a review., Water Research, 44: 2997-3027, 2010.
  • 21. Cho I.H., Zoh, K.D., Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: optimization and modelling using a response surface methodology (RSM) based on the central composite design., Dyes and Pigments. 75 (3): 533-543, 2007.
  • 22. Herrera Melián J.A., Doňa Rodríguez, J.M., Viera Sureáz, A., Valdés do Campo, C., Arana, J., Pérez Peňa, J., The photocatalytic disinfection of urban waste waters., Chemosphere 41 (3): 323-327, 2000.
  • 23. Kabra K., Chaudhary R., Sawhney R.L., Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review., Industrial & Engineering Chemistry Research, 43(24): 7683-7696, 2004.
  • 24. Molinari R., Pirilla F., Loddo V., Palmisano L., Heterogeneous photocatalytic degradation of pharmaceutical in water by using polycrystalline TiO2 and a nanofiltration membrane reactor., Catalysis Today (1-2), 118: 205-213, 2006.
  • 25. Pera-Titus M., García-Molina V., Baňos M.A., Giménez J., Esplugas, S., Degradation of chlorophenols by means of advanced oxidation processes: a general review., Applied Catalysis B: Environmental, 47: 219-256, 2004.
  • 26. Vilar V.J.P., Maldonado M.I., Oller I., Malato S., Boaventura R.A.R., Solar treatment of cork boiling and bleaching wastewaters in a pilot plant., Water Research, 43(16): 4050-4062, 2009.
  • 27. Cheng C.L., Sun D.S., Chu W.C., Tseng Y.H., Ho H.C., Wang J.B., Chung P.H., Chen J.H., Pei J.T., Lin N.T., Yu M.S., Chang H.H., The effect of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. Journal of Biomedical Science, 16(1): 6-16.
  • 28. Văcăroiu C., Enache M., Gartner M., Popescu G., Anastasescu M., Brezeanu A., Todorova N., Giannakopoulou T., Trapalis Ch., Dumitru L., The effect of thermal treatment on antibacterial properties of nanostructured TiO2 (N) films illuminated with visible light., World Journal of Microbiology and Biotechnology, 15(1): 27-31, 2009.
  • 29. Tsuang Y.H., Sun J.S., Huang Y.C., Lu C.H., Chang W.H., Wang C.C., Studies of photokilling of bacteria using titanium dioxide nanoparticles., Artificial Organs, 32(2): 167-174, 2008.
  • 30. Hajkova P., Spatenka P., Horsky J., Horska I., Kolouch A., Photocatalytic effect of TiO2 films on viruses and bacteria., Plasma Processes and Polymer, 4: 397-401, 2007.
  • 31. Wolfrum E.J., Huang J., Blake D.M., Maness P.C., Huang Z., Fiest J., Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces., Environmental Science & Technolology, 36(15): 3412–3419, 2002.
  • 32. Paspaltsis I., Kottta K., Lagoudaki R., Grigoriadis N., Poulios I., Sklaviadis T., Titanium dioxide photocatalytic inactivation of prions., Journal of General Virology, 87: 3125-3130, 2006.
  • 33. Mitoraj D., Jańczyk A., Strus M., Kirsch H., Stochel G., Heczko P.B., Macyk W. Visible light inactivation of bacteria and fungi by modified titanium., Photochem Photobiol. Sci., 6: 642-648, 2007.
  • 34. Fujishima A., Zhang X., Titanium dioxide photocatalysis: present situation and future approaches., Comptes Rendus Chimie 9 (5-6): 750-760, 2005.
  • 35. Tazawa M., Okada M., Yoshimura K., Shnjiro I., Photo-catalytic heat mirror with a thick titanium dioxide layer., Solar Energy Materials and Solar Cells, 84(1-4): 159-170, 2004.
  • 36. http://www.italcementigroup.com/NR/rdonlyres/1F30E487-C0A2-4D6F-AB6D-C14555FD866F/0/Scientificresults.pdf.
  • 37. Paz Y., Application of TiO2 photocatalysis for air treatment: patents’ overview., Applied Cataysis B: Environtal, 99 (3-4): 448-460, 2010.
  • 38. Mueller N.C., Nowack B., Exposure modelling of engineered nanoparticles in the environment., Environmental Science & Technology 42(12): 4447-4453, 2008.
  • 39. Guerrini G.L. Photocatalytic cementitious materials-situation, challenges and perspectives. http://www.worldcement.com/documents/Italcementi%20proof.pdf.
  • 40. Agrios A.G., Pichat J., State of the art and perspectives on materials and applications of photocatalysis over TiO2., Journal of Applied Electrochemistry, 35 (7-8): 655-663, 2005.
  • 41. Chen J., Poon C.S., Photocatalytic construction and building materials: from fundamentals to applications., Building and Environment, 44(9): 1899-1906, 2009.
  • 42. http://www.heidelbergcement.com/pl/pl/country/home.htm.
  • 43. Demeestere K., Dewulf J., Witte B.D., Beeldens A., Langenhove H.V., Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2., Building and Environment, 43(4): 406–14, 2008.
  • 44. Kibanova D., Cervini-Silva J., Destaillats H., Efficiency of clay-TiO2 nanocomposities on the photocatalytic elimination of a model hydrophobic air pollutant., Environmental Science & Technology, 43(5): 1500-1506, 2009.
  • 45. Jeong J., Sekiguchi K., Lee W., Sakamoto K., Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates., Journal of Pchtochemistry and Photobiology A: Chemistry, 169(3): 279-287, 2005.
  • 46. Zhao J., Chen C., Ma W., Photocatalytic degradation of organic pollutants under visible light., Topic in Catalysis, 35(3-4): 269-278, 2005.
  • 47. Guarino M., Costa A., Porro M., Photocatalytic TiO2 coating – to reduce ammonia and greenhouse gases concentration and emission from animal husbandries., Bioresource Technology, 99(7): 2650–2658, 2008.
  • 48. Khan M., Al-Shary S.M., Ingler Jr. W.B., Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297: 2243-2245, 2002.
  • 49. Momani F.A., Jarrah N., Solar/UV-induced photocatalytic degradation of volatile toluene., Environmental Technology, 30(10): 1085-1093, 2009.
  • 50. Poon C.S., Cheung E, NO removal efficiency of photocatalytic paving blocks prepared with recycled materials., Constructions and Building Materials, 21(8): 1746–53, 2006.
  • 51. Strini A, Cassese S, Schiavi L., Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor., Applied Catalysis B: Environmental, 61 (1-2): 90-97, 2005.
  • 52. De Richter R., Caillol S., Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change., Journal of Photochemistry and Photobiology C: Photochemistry Review, doi:10.1016/j.jphotochemrev.2011.05.002., 2011.
  • 53. Makles Z., Galwas-Zakrzewska M., Złowonne gazy w środowisku pracy., Bezpieczeństwo Pracy 9: 12-16, 2005.
  • 54. Pecen J., Zablodilova P., Influence of light special distribution on photocatalytic TiO2 coating in order to decrease ammonia and methane mission in animal husbandries – laboratory testing and verification., Materiały Konferencji Nanocon, Olomouc, Czechy 12-14.10. 2010.
  • 55. Liu T.X., Li X.Z., Li F.B., Development of a photocatalytic wet scrubbing process for gaseous odour treatment., Industrial & Engineering Chemistry Research, 49(8): 3617–3622, 2010.
  • 56. Li F. B., Li X.Z., Ng K.H. Photocatalytic degradation of an odorous pollutant: 2-mercaptobenzothiazole in aqueous suspension using Nd3+-TiO2 catalysts., Industrial & Engineering Chemistry Research, 45(1): 1-7., 2006.
  • 57. Kim, S.B., Hong, S.C., Kinetic Study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst., Applied Catalysis B: Environmental, 35: 305-315, 2002.
  • 58. Markowska-Szczupak A., Ulfig K., Grzmil B., Morawski A.W., A preliminary study on antifungal effect of TiO2-based paints in natural indoor light., Polish Journal of Chemical Technology, 12(4): 53-57, 2010.
  • 59. Tryba B., Morawski A.W., Inagaki M., Toyoda M., The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 photocatalysts. Applied Catalysis B: Environmental 63(3-4): 215-221, 2006.
  • 60. Janus M., Morawski A.W., New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes, decomposition Applied Catalysis B: Environmental, 75(1-2): 118-123, 2007.
  • 61. Auvinen J., Wirtanen L., The influence of photocatalytic interior paints on indoor air quality., Atmospheric Environment, 42(18): 4101-4112, 2008.
  • 62. Cacho C., Geiss O., Barrero-Moreno J., Binas V.D., Kiriakidis G., Botalico L., Kotzias D., Studies on photo-induced NO removal by Mn-doped TiO2 under indoor-like illumination conditions. Journal of Photochemistry and Photobiology A: Chemistry doi:10.1016/j.jphotochem.2011.04.037, 2011.
  • 63. Amrhein K., Dietmar S., Principles and test methods for the determination of the activity of photocatalytic materials and their application to modified building materials., Photochemical and Photobiological Science, 10: 338-342, 2011.
  • 64. Salthammer T., Fuhrmann F., Schulz N., Siwinksi N., Removal of indoor contaminants by photocatalytic reaction. W: Proceedings of Healthy Buildings 2006, Lissabon, Portugal, 4-8.6. 2006.
  • 65. Markowska-Szczupak A., Ulfig K., Morawski A.W., The application of titanium dioxide for deactivation of bioparticulates: an overview., Catalysis Today, doi:10.1016/j.cattod.2010.11.055, 2011.
  • 66. http://www.pigment.inet.pl.
  • 67. Maggos T., Bartzis J.G., Liakou M., Gobin C., Photocatalytic degradation of NOx gases using TiO2- containing paint: a real scale study., Journal of Hazardous Materials, 146(3): 668-673, 2007.
  • 68. Castrillón S.R.V., Lasa H.I., Performance evaluation of photocatalytic reactors for air purification using computational fluid dynamics (CFD)., Industrial & Engineering Chemistry Research, 46(18): 5867-5880, 2007.
  • 69. http://www.fresh2.com/.
  • 70. http://www.coolbuzz.org/entry/deodr-lampshade-freshen-your-clothes-without-washing/.
  • 71. http://www.certech.be/files/FileLibraryFile.php?ID=2923.
  • 72. Lounibos L.P., Invasions by insect vectors of human disease., Annual Review Entomology, 47: 233-266, 2002.
  • 73. http://www.bukisa.com/articles/395460_eco-friendly-tio2-photo-catalyst-mosquito-trap
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM4-0032-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.