PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Montmorillonite as a Polyurethane Foams Flame Retardant

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polyurethane foams are used in many applications for example in automotive industry. They are attractive especially because of cushioning and physical properties and easy handling. The use of polyurethanes for car, train or railway seats is determined by their behaviour during fire conditions. To improve the safety of polyurethane foams usage, flame retardants are applied for their production. The most popular are polybrominated biphenyl (PBB) and polybrominated diphenyl ether (PBDE), reputed as possibly environmentally hazardous (possibility of carcinogenesis by accumulation in the human body). Car producers like Volvo or Scania have published “Grey and black chemical list” to limit and eventually phase out hazardous substances from products and production process. Among these substances are PBB and PBDE [1, 2]. To solve this problem research for new fire retardants for polyurethane is intensified. In recent years some research has focused on montmorillonite (MMT) based fire retardants. MMT is one of the 2:1 type phyllosilicate clays with exchangeable cations in the interlamellar galleries. Its use in polymeric matrix improve mechanical properties, gas barrier performance and thermal properties. Polymer clay nanocomposites have been used by Toyota for barrier and under-hood engine parts since the 1990s. Recent usage in the 2004 Hummer H2 and the Chevrolet Impala are noted [3]. The improvement of fire retardant and thermal stability can be achieved when modified clay is applied. The exchangeable cations can be replaced with phosphonium [4], onium ions [5] or other.
Słowa kluczowe
Rocznik
Strony
459--462
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
  • Department of Ship Safety Engineering, West Pomeranian University of Technology, Szczecin al. Piastów 41, 71-065 Szczecin, Poland, agnieszka.ubowska@zut.edu.pl
Bibliografia
  • [1] SCANIA Standard STD 4158 (2007).
  • [2] Standard Volvo Group STD 100-0002 (2006).
  • [3] Morgan A. B., Polym. Adv. Technol. 2006, 17, 206.
  • [4] Modesti M., Lorenzetti A., Besco S., Hrelja D., Semenzato S., Bertani R., Michelin R. A., Polym. Degrad. Stab. 2008, 93, 2166.
  • [5] Cao X., Lee L. J., Widya T., Macosko Ch., Polymer 2005, 46, 775.
  • [6] Krämer R.H., Zammarano M., Linteris G.T., Gedde U.W., Gilman J.W., Polym. Degrad. Stab. 2010, 95, 1115.
  • [7] Lefebvre J., Bastin B., Le Bras M., Duquesne S., Ritter Ch., Paleja R., Poutch F., Polymer Test. 2004, 23, 281.
  • [8] Weil E. D., Levchik S. V., J. Fire Sci. 2004, 22, 183.
  • [9] Pramanik M., Srivastava S. K., Samantaray B. Bhowmick A.J. Mater. Sci. Lett. 2001, 20, 1377.
  • [10] Wilkinson A. N., Fithriyah N. H., Stanford J. L., Suckley D., Macromol. Symp. 2007, 256, 65.
  • [11] Chattopadhyay D.K., Webster D. C., Prog. Polym. Sci. 2009, 34, 1068.
  • [12] Lewin M., Fire Mater. 2003, 27, 1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM4-0031-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.