PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioethanol - Production and Utilization

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioethanol was an alternative liquid fuel produced from biomass that contained large amount of sugar (e.g. sugar cane, grain or biomass of lignocellulosic). An interesting idea was to use algae to produce bioethanol. Production of bioethanol from starch was a process of 3 stages: hydrolysis of starch, fermentation of glucose and separation/purification of ethanol. Bioethanol production from lignocellulosic biomass was a process of 4 stages: lignocelluloses pretreatment, cellulose hydrolysis, fermentation of sugars and separation/purification of ethanol. Bioethanol was more friendly for environment than convectional fuel because it was renewable energy source. Bioethanol could be used as clean or as blend (gasohol, diesohol). According to the literature, still extend research on production and use of bioethanol was observed.
Słowa kluczowe
Rocznik
Strony
237--246
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
  • Czestochowa University of Technology, Institute of Environmental Engineering, Brzeźnicka 60a, 42-200 Czestochowa, Poland, tel. 34 3721303, fax 34 3721304, lslawik@is.pcz.czest.pl
Bibliografia
  • [1] Demirbas A., Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy Conversion and Management, (2008), 49, pp. 2106–2116.
  • [2] Balat Mustafa, Balat M., Political, economic and environmental impacts of biomass-based hydrogen, International Journal of Hydrogen Energy, (2009), 34, pp. 3589–3603.
  • [3] Suresh K., Kiransree N., Venkateswar Rao L., Production of ethanol by raw starch hydrolysis and fermentation of damaged grains of wheat and sorghum, Bioprocess Engineering, (1999), 21, pp. 165.
  • [4] Balat M., Balat H., Recent trends in global production and utilization of bioethanol fuel, Applied Energy, (2009), 86, pp. 2273–2282.
  • [5] Farrell A. E., Plevin R. J., Turner B. T., Jones A. D., O’Hare M., Kammen D. M., Ethanol Can Contribute to Energy and Environmental Goals, Science Vol. 311. no. 5760, (2006), 27, pp. 506 – 508
  • [6] Chisti Y., Biodiesel from microalgae beats bioethanol, Trends in Biotechnology Vol. 26, Issue: 3, 2008, pp.126-131.
  • [7] Koh L. P., Ghazoul J., Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities, Biological Conservation (2008),141, pp. 2450–2460.
  • [8] Demirbas A., Biofuels securing the planet’s future energy needs, Energy Conversion and Management (2009), 50, pp. 2239–2249.
  • [9] Gielen D.J., de Feber M.A.P.C., Bos A.J.M., Gerlagh T., Biomass for energy or materials? A Western European systems engineering perspective, Energy Policy (2001), 29, pp. 291-302.
  • [10] Balat M., Balat H., O¨z C., Progress in bioethanol processing, Progress in Energy and Combustion Science (2008), 34, pp. 551–573.
  • [11] Mosier N., Wyman Ch., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M., Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technology (2005), 96, pp. 673–686.
  • [12] Kim S., Dale B. E., Global potential bioethanol production from wasted crops and crop residues, Biomass and Bioenergy (2004), 26, pp. 361 – 375.
  • [13] Enguídanos M., Soria A., Kavalov B., Jensen P., Techno-economic analysis of Bio-alcohol production in the EU: a short summary for decision-makers, 2002, www.senternovem.nl/mmfiles/26432_tcm24-279847.pdf.
  • [14] Gray K. A., Zhao L., Emptage M., Bioethanol, Current Opinion in Chemical Biology, (2006), 10, pp. 141–146.
  • [15] Gavrilescu Maria, Chisti Y., Biotechnology-a sustainable alternative for chemical industry, Biotechnology Advances (2005), 23, pp. 471–499.
  • [16] Sa´nchez O´. J., Cardona C. A., Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresource Technology (2008), 99, pp. 5270–5295.
  • [17] Gressel J., Transgenics are imperative for biofuel crops, Plant Science (2008),174, pp. 246–263
  • [18] Lin Y., Tanaka S., Ethanol fermentation from biomass resources: current state and prospects, Appl Microbiol Biotechnol, (2006), 69, pp. 627–642.
  • [19] Dien B. S., Cotta M. A., Jeffries T. W., Bacteria engineered for fuel ethanol production: current status, Appl Microbiol Biotechnol, (2003), 63, pp. 258-266.
  • [20] Jeffries T. W., Jin Y.-S., Metabolic engineering for improved fermentation of pentoses by yeasts, Appl Microbiol Biotechnol, (2004), 63, pp. 495-509.
  • [21] Fortman J.L., Chhabra S., Mukhopadhyay A., Chou H., Lee T. S., Steen E., Keasling J. D., Biofuel alternatives to ethanol: pumping the microbial well, Trends in Biotechnology, Volume 26, 2008, 7 pp. 375-381.
  • [22] Mohanty S. K., Behera S., Swain M. R., Ray R. Ch., Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation, Applied Energy (2009), 86, pp. 640.
  • [23] Balat M., Balat H., Recent trends in global production and utilization of bio-ethanol fuel, Applied Energy (2009), 86, pp. 2273–2282.
  • [24] Hamelinck C. N., van Hooijdonk G., Faaij A. PC, Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term, Biomass and Bioenergy (2005), 28, pp. 384–410.
  • [25] Wyman Ch. E., Dale B. E., Elander R. T. , Holtzapple M., Ladisch M. R., Lee Y.Y., Coordinated development of leading biomass pretreatment technologies, Bioresource Technology (2005), 96, pp. 1959–1966.
  • [26] Silverstein R. A., Chen Y., Sharma-Shivappa R. R., Boyette M. D., Osborne J., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks, Bioresource Technology (2007), 98, pp. 3000–3011.
  • [27] Taherzadeh M. J., Karimi K., Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review, Int. J. Mol. Sci. (2008), 9, pp. 1621-1651.
  • [28] Sun Y., Cheng J., Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technology (2002), 83, pp. 1–11.
  • [29] da Costa Sousa L., Chundawat S. PS, Balan V., Dale B. E., ‘Cradle-to-grave’ assessment of existing lignocelluloses pretreatment Technologies, Current Opinion in Biotechnology (2009), 20, pp. 339–347.
  • [30] Sa´nchez O´. J., Cardona C. A., Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresource Technology (2008), 99, pp. 5270–5295.
  • [31] Kumar P., Barrett D. M., Delwiche M. J., Stroeve P., Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Industrial & Engineering Chemistry Research, (2009), pp. A-Q.
  • [32] Jacobsen S. E., WYMAN Ch. E., Cellulose and Hemicellulose Hydrolysis Models for Application to Current and Novel Pretreatment Processes, Applied Biochemistry and Biotechnology, Vol. 84–86, (2000), pp. 81-96.
  • [33] Lloyd T. A., Wyman Ch. E., Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids, Bioresource Technology (2005), 96, pp. 1967–1977.
  • [34] Weil J. R., Pretreatment of corn fiber by pressure cooking in water, Applied Biochemistry and Biotechnology, Vol. 73, (1998), 1, pp. 1-17.
  • [35] Weil J. R., Dien B, Bothast R., Hendrickson R., Mosier N. S., Ladisch M. R., Removal of Fermentation Inhibitors Formed during Pretreatment of Biomass by Polymeric Adsorbents, Ind. Eng. Chem. Res. (2002), 41, pp. 6132-6138.
  • [36] Frederick Jr. W.J., Lien S.J., Courchene C.E., DeMartini N.A., Ragauskas A.J., Iisa K., Production of ethanol from carbohydrates from loblolly pine: A technical and economic assessment, Bioresource Technology (2008), 99, pp. 5051–5057.
  • [37] Mosier N., Hendrickson R., Ho N., Sedlak M., Ladisch M. R., Optimization of pH controlled liquid hot water pretreatment of corn stover, Bioresource Technology (2005), 96, pp. 1986–1993.
  • [38] Kim S., Holtzapple M. T., Lime pretreatment and enzymatic hydrolysis of corn stover, Bioresource Technology (2005), 96, pp. 1994–2006.
  • [39] Taherzadeh M. J., Karimi K., Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review, Int. J. Mol. Sci. (2008), 9, pp. 1621-1651.
  • [40] Demirbas A., Progress and recent trends in biofuels, Progress in Energy and Combustion Science (2007), 33, pp. 1–18.
  • [41] Dembiras A., Bioethanol from Cellulosic Materials: A Renewable Motor Fuel from Biomass, Energy Sources, (2005), 21, pp. 327-337.
  • [42] da Costa Sousa L., Chundawat S. PS, Balan V., Dale B. E., ‘Cradle-to-grave’ assessment of existing lignocelluloses pretreatment Technologies, Current Opinion in Biotechnology (2009), 20, pp. 339–347.
  • [43] Kim S., Holtzapple M. T., Effect of structural features on enzyme digestibility of corn stover, Bioresource Technology (2006), 97, pp. 583–591.
  • [44] Yacobucci BD, Schnepf R. Ethanol and biofuels agriculture, infrastructure, and Market Constraints Related to Expanded Production, (2007), http://assets.opencrs.com/rpts/RL33928_20070316.pdf.
  • [45] De Oliviera M. E. D., Vaughan B. E., Rykiel Jr, E. J., Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint, BioScience Vol. 55, (2005), 7, pp. 593-602.
  • [46] Demirbas A., Importance of biodiesel as transportation fuel, Energy Policy (2007), 35, pp. 4661–4670.
  • [47] Malca J., Freire F., Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation, Energy (2006), 31, pp. 3362–3380.
  • [48] Gavrilescu Maria, Chisti Y., Biotechnology—a sustainable alternative for chemical industry, Biotechnology Advances (2005), 23, pp. 471–499.
  • [49] Kim S., Dale B. E., Global potential bioethanol production from wasted crops and crop residues, Biomass and Bioenergy (2004), 26, pp. 361 – 375.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM4-0030-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.