PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combustion Gases in Highly Preheated Air (HiTAC) Technology

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with combustion of typical industrial gases in configurations characterized by the separation of the jets of gas and air flowing into the combustion chamber. The experiments involved three types of fuel gases: LPG, high methane natural gas and low calorific natural gases. The low calorific gases were composed as mixture of the natural gas (containing about 97% methane, less than 1 per cent of highest hydrocarbons and nitrogen) and nitrogen as inert gas. The experiment involved fuels as poor as containing only 50% of combustible gases (LHV lower than 18 MJ/Nm3). The results of investigation of combustion a gases in regenerative burner are presented in the paper. The paper presents also data from the burning of the above gases in a Semi Industrial Gas Burner (SIGB). Such a burner consists of a pipe carrying highly preheated air and at least two nozzles providing the gas. The data include the geometry of SIGB, the level of air preheating and the density of heat release. Generally, the investigation shows that for the temperature of preheated air over 650oC (a typical temperature for central recuperators in industrial gas furnaces) and temperature of furnace 1250oC it is possible to lower the emission of pollutant NOx over 3.5 times. The paper also presents some data on combustion of LPG at an industrial furnace equipped with the set of SIGB gas burner. The furnace was built for heat treatment of steel to process 80 t/h at over 1200oC. There were 17 sets of gas burners on the furnace.
Słowa kluczowe
Rocznik
Strony
173--185
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Kyoto Protocol to the United Nations Framework Convention on Climate Change, New York on 9 May 1992.
  • [2] Kröger, W.: Issues of Secure Energy Supply, LATSIS Symposium 2006 - Research Frontiers in Energy Science and Technology Energy and Reliability, ETH Zurich, October 2006.
  • [3] Blasiak W., Dobski T. Lille S., Mörtberg M., rafidi, N.: Combustion Tests And Heat Flux Measurements In A Test Furnace Equipped With High Temperature Air Combustion Mode, 4th HiTACG, Rome 2001.
  • [4] Lille S., Dobski T., Blasiak W.: Visualization of Fuel Jet in Conditions of Highly Preheated Air Combustion, Journal of Propulsion and Power, Vol. 16, No 4, Pages: 596-600 (2000).
  • [5] T. Dobski, W. Kruszewski, A. Świderski R. Ślefarski, R. Jankowski, W. Blasiak: Combustion of low calorific natural gases in regenerative gas burner in semi-industrial combustion chamber, 6th HiTACG 2005, Gas Warme Institut, Essen, 17-20 October, 2005.
  • [6] T. Dobski, A. Świderski, R. Ślefarski ,W. Kruszewski, R. Jankowski, Z. Figas: An investigation of combustion of low caloric natural gases in highly preheated air technology, XIX International Symposium on Combustion Processes, 30 August-2 September, Wisla, Poland, pp. 114-123.
  • [7] Szewczyk, D.: Combustion of single jet of low calorific natural gases in highly preheated oxidizer in cross flow, PhD Thesis, Poznan University of technology, 2001.
  • [8] Swiderski, A.: Combustion of jet of low calorific natural gases in post flame gases preheated to very high temperature, PhD Thesis Poznan University of technology, 2004.
  • [9] W. Blasiak, D. Szewczyk, T. Dobski: Influence of N2 addition on combustion of single jet of methane in highly preheated air, in: Proceedings of IJPGC’01, paper FACT-19048, New Orleans, USA, 4-7 June 2001.
  • [10] W. Yang, W. Blasiak: Numerical simulation of properties of a LPG flame with high-temperature air, International Journal of Thermal Sciences, 2005.
  • [11] Ricou, F., Spalding, D.: Measurements of entertainment by axisymmetrical turbulent jets, Journal of Fluid Mechanic, 1961, s. 21-32.
  • [12] Peters, N.: Turbulent Combustion, Cambridge University Press, 2004.
  • [13] Hiroshi T., Gupta A., T. Hasegawa, M. Katsuki, K. Kishimoto, M. Morita: High Temperature Air Combustion, CRC PRESS, Washington.
  • [14] E. Carrea, G.di Fuccia, P. Jansohn: High temperature air combustion: Application to lean high pressure combustors, 4th HiTACG symposium, 2001, Rome.
  • [15] R.J. Kee, F.M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, O. Adigun, W. G. Houf, C. P. Chou, S. F. Miller, P., Ho, D. J. Young, Chemkin Release 4.0, Reaction Desing , Inc., San Diego, CA (2005).
  • [16] Ashwani K. Gupta.: Flame Length and Ignition Delay Time of Acetylene in High Temperature Combustion Air, 5th International Symposium on High Temperature Air Combustion And Gasification, Tokyo Institute of Technology, Japan, October 28-30, 2002.
  • [17] Szewczyk, D., Björn Forsberg, B.: High-Cycle Regenerative Systems (HRS Burners) And High Temperature Air Combustion Technology (HiTAC) – European Industrial Application, International Symposium on New Domestic and Industrial Gas Technology, Poznan September 2006.
  • [18] Dobski, T.: Combustion of low calorific natural gases in industrial facilities, Report of Technical University of Poznan, No 359, 2001.
  • [19] Guessing installation for gasification of wood biomass with JMS 620 gas engine, Austria 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM4-0028-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.