Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Sterowanie i chaos w układach drgających z uderzeniami oraz nieidealnych oscylatorów
Języki publikacji
Abstrakty
In the paper, we discuss dynamics of two kinds of mechanical systems. Initially, we consider vibro-impact systems which have many implemen- tations in applied mechanics, ranging from drilling machinery and metal cutting processes to gear boxes. Moreover, from the point of view of dynamical systems, vibro-impact systems exhibit a rich variety of phe- nomena, particularly chaotic motion. In this paper, we review recent works on the dynamics of vibro-impact systems, focusing on chaotic mo- tion and its control. The considered systems are a gear-rattling model and a smart damper to suppress chaotic motion. Furthermore, we inve- stigate systems with non-ideal energy source, represented by a limited power supply. As an example of a non-ideal system, we analyse chaotic dynamics of the damped Duffing oscillator coupled to a rotor. Then, we show how to use a tuned liquid damper to control the attractors of this non-ideal oscillator.
W pracy przedyskutowano zagadnienie dynamiki mechanizmów dwóch rodzajów. Najpierw rozważono układ drgający z uderzeniami, który znajduje liczne aplikacje praktyczne w mechanice stosowanej, począwszy od urządzeń wiertniczych przez procesy cięcia metalu do skrzyń biegów włącznie. Z punktu widzenia dynamiki maszyn układy wibro-uderzeniowe wykazują bogactwo interesujących zjawisk, wliczając w to chaos. W pracy zaprezentowano przegląd ostatnich prac dotyczących dynamiki układów wibro-uderzeniowych, w których zajęto się problemem chaosu i możliwości jego sterowania. Przeanalizowano układy mechaniczne na przykładzie modelu kół zębatych z systemem ”inteligentnego” tłumika do eliminacji ruchu chaotycznego. Zajęto się, po drugie, mechanizmami z nieidealnym źródłem energii odwzorowanym poprzez układ ograniczonego poboru mocy. Jako przykład zbadano dynamikę chaotyczną tłumionego oscylatora Duffinga połączonego z wirnikiem. Pokazano sposób zastosowania płynnego tłumika do sterowania formą atraktorów obserwowanych w nieidealnym oscylatorze.
Czasopismo
Rocznik
Tom
Strony
641--664
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
autor
autor
autor
- University of Sao Paulo, Institute of Physics, Sao Paulo, SP, Brazil, thomaz@if.usp.br
Bibliografia
- 1. Alvarez-Ramirez J., Espinosa-Paredes G., Puebla H., 2003, Chaos control using small-amplitude damping signals, Physics Letters A, 316, 196-205
- 2. Bishop S.R., Wagg D.J., Xu D., 1998, Use of control to maintain period-1 motions during wind-up or wind-down operations of an impacting driven beam, Chaos, Solitons and Fractals, 9, 261-269
- 3. Blazejczyk-Okolewska B., Czolczynski K., Kapitaniak T., Wojewoda J., 1999, Chaotic Mechanics in Systems with Friction and Impacts, World Scientific, Singapore
- 4. Blazejczyk-Okolewska B., Czolczynski K., Kapitaniak T., 2004, Classification principles of types of mechanical systems with impacts – fundamental assumptions and rules, European Journal of Mechanics – A/Solids, 23, 3, 517-537
- 5. Chaterjee S., Mallik A.K., Ghosh A., 1995, On impact dampers for nonlinear vibrating systems, Journal of Sound and Vibration, 187, 403-420
- 6. Czolczynski K., Blazejczyk-Okolewska B., Kapitaniak T., 2000, Impact force generator: self-synchronization and regularity of motion, Chaos, Solitons and Fractals, 11, 2505-2510
- 7. de Souza S.L.T., Caldas I.L., 2001, Basins of attraction and transient chaos in a gear-rattling model, Journal of Vibration and Control, 7, 849-862
- 8. de Souza S.L.T., Caldas I.L., 2004, Calculation of Lyapunov exponents in systems with impacts, Chaos, Solitons and Fractals, 19, 569-579
- 9. de Souza S.L.T., Caldas I.L., Viana R.L., Balthazar J.M., 2004, Sudden changes in chaotic attractors and transient basins in a model for rattling in gearboxes, Chaos, Solitons and Fractals, 21, 763-772
- 10. de Souza S.L.T., Caldas I.L., Viana R.L., Balthazar J.M., Brasil R.M.L.R.F., 2005a, Basins of attraction changes by amplitude constraining of oscillators with limited power supply, Chaos, Solitons and Fractals, 26, 1211-1220
- 11. de Souza S.L.T., Caldas I.L., Viana R.L., Batista A.M., Kapitaniak T., 2005b, Noise-induced basin hopping in a gearbox model, Chaos, Solitons and Fractals, 26, 1523-1531
- 12. de Souza S.L.T., Caldas I.L., Viana R.L., Balthazar J.M., Brasil R.M.L.R.F., 2006, Dynamics of vibrating systems with tuned liquid column dampers and limited power supply, Journal of Sound and Vibration, 289, 987-998
- 13. de Souza S.L.T., Caldas I.L., Viana R.L., 2007a, Damping control law for a chaotic impact oscillator, Chaos, Solitons and Fractals, 32, 745-750
- 14. de Souza S.L.T., Caldas I.L., Viana R.L., Balthazar J.M., Brasil R.M.L.R.F., 2007b, A simple feedback control for a chaotic oscillator with limited power supply, Journal of Sound and Vibration, 299, 664-671
- 15. de Souza S.L.T.,Wiercigroch M., Caldas I.L., Balthazar J.M., 2007c, Suppressing grazing chaos in impacting system by structural nonlinearity, Chaos, Solitons and Fractals, in press, doi:10.1016/j.chaos.2007.01.022
- 16. Dimentberg M.F., McGovern L., Norton R.L., Chapdelaine J., Harrison R., 1997, Dynamics of an unbalanced shaft interacting with a limited power supply, Nonlinear Dynamics, 13, 171-187
- 17. Felix J.L.P., Balthazar J.M., Brasil R.M.L.R.F., 2005, On tuned liquid column dampers mounted on a structural frame under a non-ideal excitation, Journal of Sound and Vibration, 282, 1285-1292
- 18. Fradkov A.L., Evans R.J., Andrievksy B.R., 2006, Control of chaos: methods and applications in mechanics, Philosophical Transactions of The Royal Society A, 364, 2279-2307
- 19. Ing J., Pavlovskaia E., Wiercigroch M., 2006, Dynamics of a nearly symmetrical piecewise linear oscillator close to grazing incidence: modelling and experimental verification, Nonlinear Dynamics, 46, 225-238
- 20. Ivanov A.P., 1996, Bifurcations in impact systems, Chaos, Solitons and Fractals, 7, 1615-1634
- 21. Jerrelind J., Stensson A., 2000, Nonlinear dynamics of parts in engineering systems, Chaos, Solitons and Fractals, 11, 2413-2428
- 22. Jin L., Lu Q.S., Twizell E.H., 2006, A method for calculating the spectrum of Laypunov exponents by local maps in non-smooth impact-vibrating systems, Journal of Sound and Vibration, 298, 1019-1033
- 23. Kapitaniak T., 2000, Chaos for Engineers, Springer Verlag, New York-Berlin-Heidelberg
- 24. Karagiannis K., Pfeiffer F., 1991, Theoretical and experimental investigations of gear-rattling, Nonlinear Dynamics, 2, 367-387
- 25. Kononenko V.O., 1969, Vibrating Systems with a Limited Power Supply, Iliffe Books Ltd, London
- 26. Krasnopolskaya T.S., Shvets A.Y., 1993, Chaos in vibrating systems with a limited power-supply, Chaos, 3, 387-395
- 27. Lee J.Y., Yan J.J., 2006, Control of impact oscillator, Chaos, Solitons and Fractals, 28, 136-142
- 28. Luo A.C.J., 2004, Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator, Chaos, Solitons and Fractals, 19, 823-839
- 29. Luo G.W., Chu Y.D., Zhang Y.L., Zhang J.G., 2006, Double Neimark-Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops, Journal of Sound and Vibration, 298, 154-179
- 30. Luo G.W., Zhang Y.L., Chu Y.D., Zhang J.G., 2007, Codimension-two bifurcations of fixed points in a class of vibratory systems with symmetrical rigid stops, Nonlinear Analysis: Real World Applications, 8, 1272-1292
- 31. McDonald S.W., Grebogi C., Ott E., 1983, Final state sensitivity: an obstruction to predictability, Physics Letters A, 99, 415-418
- 32. McDonald S.W., Grebogi C., Ott E., 1985, Fractal basin boundaries, Physica D, 17, 125-153
- 33. Nordmark A.B., 1991, Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration, 145, 279-297
- 34. Ott E., Grebogi C., Yorke J.A., 1990, Controlling chaos, Physical Review Letters, 64, 1196-1199
- 35. Pavlovskaia E., Wiercigroch M., Grebogi C., 2001, Modeling of an impact system with a drift, Physical Review E, 64, 056224
- 36. Peterka F., Vacik J., 1992, Transition to chaotic motion in mechanical systems with impacts, Journal of Sound and Vibration, 154, 95-115
- 37. Pfeiffer F., Kunert A., 1990, Rattling models from deterministic to stochastic processes, Nonlinear Dynamics, 1, 63-74
- 38. Pyragas K., 1992, Continuous control of chaos by self-controlling feedback, Physics Letters A, 170, 421-428
- 39. Tereshko V., Chacón R., Preciado V., 2004, Controlling chaotic oscillators by altering their energy, Physics Letters A, 320, 408-416
- 40. Warminski J., Balthazar J.M., Brasil R.M.L.R.F., 2001, Vibrations of a non-ideal parametrically and self-excited model, Journal of Sound and Vibration, 245, 363-374
- 41. Wiercigroch M., 2000, Modelling of dynamical systems with motion dependent discontinuities, Chaos, Solitons and Fractals, 11, 2429-2442
- 42. Wiercigroch M., de Kraker B., 2000, Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities, World Scientific, Singapore
- 43. Wiercigroch M., Wojewoda J., Krivtson A.M., 2005, Dynamics of ultrasonic percussive drilling of hard rocks, Journal of Sound and Vibration, 280, 739-757
- 44. Wolf A., Swift J.B., Swinney H.L., Vastano J.A., 1985, Determining Lyapunov exponents from a time series, Physica D, 16, 285-317
- 45. Xu X., Pavlovskaia E., Wiercigroch M., Romeo F., Lenci S., 2007, Dynamic interactions between parametric pendulum and electro-dynamical shaker, Z. Angew. Math. Mech., 87, 172-186
- 46. Yalla S.K., Kareem A., 2001, Beat phenomenon in combined structure liquid damper systems, Engineering Structures, 23, 622-630
- 47. Yalla S.K., Kareem A., Kantor J.C., 2001, Semi-active tuned liquid column dampers for vibration control of structures, Engineering Structures, 23, 1469-1479
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM4-0009-0010