Identyfikatory
Warianty tytułu
Stochastyczna bifurkacja Hopfa w quasi-całkowalnych układach Hamiltonowskich sterowanych w pętli sprzężenia zwrotnego z opóźnieniem
Języki publikacji
Abstrakty
The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with time-delayed feedback control subject to Gaussian white noise excitations is studied. First, the time-delayed feedback control forces are approximately expressed in terms of the system state variables without time delay, and the system is converted into anordinary quasi-integrable Hamiltonian system. The averaged It�o stochastic differential equations are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, an expression for the average bifurcation parameter of the averaged system is obtained approximately, and a criterion for determining the stochastic Hopf bifurcation caused by the time-delayed feedback control forces in the original system as the value of the average bifurcation parameter changing is proposed. An example is worked out in detail to illustrate the above criterion and its validity, and to show the effect of the time delay in the feedback control on the stochastic Hopf bifurcation of the system.
W pracy zajęto się problemem stochastycznej bifurkacji Hopfa quasi-całkowalnych układów Hamiltonowskich o wielu stopniach swobody poddanych wymuszeniu białym szumem z układem sterowania opartym na pętli sprzężenia zwrotnego z opóźnie- niem. Najpierw znaleziono przybliżone wyrażenia na siły sterujące w funkcji zmiennych stanu układu bez opóźnienia, a następnie przetransformowano go postaci quasi- całkowalnej, Hamiltonowskiej. Wyprowadzono stochastyczne równania różniczkowe It^o za pomocą metody uśredniania układów quasi-całkowalnych. Znaleziono przybliżoną postać wyrażenia na parametr bifurkacyjny uśrednionego układu i zaproponowano kryterium stwierdzające obecność stochastycznej bifurkacji Hopfa wywołanej siłami sterującymi z opóźnieniem na podstawie wartości zmiany tego parametru. Opracowa- no szczegółowo przykład do ilustracji działania tego kryterium i zakresu jego stosowalności oraz do prezentacji wpływu opóźnienia w pętli sterownia na stochastyczną bifurkację Hopfa badanego układu.
Czasopismo
Rocznik
Tom
Strony
531--550
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
Bibliografia
- 1. Agrawal A.K., Yang J.N., 1997, Effect of fixed time delay on stability and performance of actively controlled civil engineering structures, Earthquake Engineering and Structural Dynamics, 26, 1169-1185
- 2. Arnold L., Sri Namachchivaya N., Schenk-Hoppe K.R., 1996, Toward and understanding of stochastic Hopf bifurcation: a case study, International Journal of Bifurcation and Chaos, 6, 1947-1975
- 3. Atay F.M., 1998, Van der Pol’s oscillator under delayed feedback, Journal of Sound and Vibration, 218, 333-339
- 4. Blankenship G., Papanicolaou G.C., 1978, Stability and control of stochastic systems with wide-band disturbances, SIAM Journal of Applied Mathematics, 34, 437-476
- 5. Das S.L., Chatterjee A., 2002, Multiple scales without center manifold reductions for delay differential equations near hopf bifurcations, Nonlinear Dynamics, 30, 323-335
- 6. Di Paola M., Pirrotta A., 2001, Time delay induced effects on control of linear systems under random excitation, Probabilistic Engineering Mechanics, 16, 43-51
- 7. Grigoriu M., 1997, Control of time delay linear systems with Gaussian white noise, Probabilistic Engineering Mechanics, 12, 89-96
- 8. Hassard B., Kazarinoff N., Wan Y.H., 1981, Theory and Applications of Hopf Bifurcation, Cambridge University Press, London
- 9. Hu H.Y., Wang Z.H., 2002, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer-Verlag, Berlin
- 10. Huang Z.L., Zhu W.Q., Suzuki Y., 2000, Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations, Journal of Sound and Vibration, 238, 233-256
- 11. Kalmar-Nagy T., Stepan G., Moon F.C., 2001, Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations, Nonlinear Dynamics, 26, 121-142
- 12. Khasminskii R.Z., 1967, Sufficient and necessary conditions of almost sure asymptotic stability of a linear stochastic system, Theory of Probability and Applications, 11, 390-405
- 13. Kuo B.C., 1987, Automatic Control Systems, Prentice-Hall, Englewood Cliffs, NJ
- 14. Kushner H.J., 1984, Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, The MIT Press, Cambridge, MA
- 15. Kuznestov Y.A., 1998, Elements of Applied Bifurcation Theory, Springer, New York
- 16. Lin Y.K., Cai G.Q., 1995, Probabilistic Structural Dynamics: Advanced Theory and Applications, McGraw-Hill, New York
- 17. Liu Z.H., Zhu W.Q., 2007, Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control, Journal of Sound and Vibration, 299, 178-195
- 18. Liu Z.H., Zhu W.Q., 2008, Asymptotic Lyapunov stability with probability one of quasi integrable Hamiltonian systems with delayed feedback control, Automatica, in print
- 19. Longtin A., 1991, Noise-induced transitions at a Hopf bifurcation in a firstorder delay-differential equation, Physical Review A, 44, 4801-4813
- 20. Malek-Zavarei M., Jamshidi M., 1987, Time-Delay Systems: Analysis, Optimization and Applications, North-Holland, New York
- 21. Pu J.P., 1998, Time delay compensation in active control of structures, ASCE Journal of Engineering Mechanics, 124, 1018-1028
- 22. Sri Namachchivaya N., 1990, Stochastic bifurcation, Appl. Math. Comput., 38, 101-159
- 23. Stepan G., 1989, Retarded Dynamical Systems: Stability and Characteristic Functions, Longman Scientific and Technical, Essex
- 24. Stephen W., Richard R., 2002, The dynamics of two coupled van der Pol oscillators with delay coupling, Nonlinear Dynamics, 30, 205-221
- 25. Xu J., Chung K.W., 2003, Effects of time delayed position feedback on a van der Pol-Duffing oscillator, Physica D, 180, 17-39
- 26. Zhu W.Q., Huang Z.L., 1999, Stochastic Hopf bifurcation of quasinonintegrable Hamiltonian systems, International Journal of Non-linear Mechanics, 34, 437-447
- 27. Zhu W.Q., Huang Z.L., Deng M.L., 2003, Optimal bounded control of firstpassage failure of quasi-integrable Hamiltonian systems with wide-band random excitation, Nonlinear Dynamics, 33, 189-207
- 28. Zhu W.Q., Liu Z.H., 2007, Response of quasi-integrable Hamiltonian systems with delayed feedback bang-bang control, Nonlinear Dynamics, 49, 31-47
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM4-0009-0004