Identyfikatory
Warianty tytułu
Analiza drgań dynamicznego układu z podwójnym wahadłem o trzech stopniach swobody
Języki publikacji
Abstrakty
The nonlinear response of a three-degree-of-freedom vibratory system with a double pendulum in the neighborhood of internal and external resonances has been examined. Numerical and analytical methods have been applied for these investigations. Analytical solutions have been obtained by using the multiple scales method. This method is used to construct first-order non- linear ordinary differential equations governing the modulation of amplitudes and phases. Steady state solutions and their stability are computed for selected values of the system parameters.
W pracy przebadano drgania nieliniowego układu o trzech stopniach swobody z podwójnym wahadłem w otoczeniu rezonansów wewnętrznych i zewnętrznych. Badania przeprowadzono analitycznie i numerycznie. Rozwiązanie analityczne uzyskano przy użyciu metody wielu skali czasowych. Metoda posłużyła do zbudowania nieliniowych równań różniczkowych pierwszego rzędu opisujących modulację amplitud i faz. Rozwiązanie ustalone i jego stabilność zostały przedstawione dla wybranych wartości parametrów układu.
Czasopismo
Rocznik
Tom
Strony
141--156
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
Bibliografia
- 1. Bajaj A.K., Chang S.I., Johnson J.M., 1994, Amplitude modulated dynamics of a resonantly excited autoparametric two degree-of-freedom system, Nonlinear Dynamics, 5, 433-357
- 2. Bajaj A.K., Johnson J.M., 1990, Asymptotic techniques and complex dynamics in weakly non-linear forced mechanical system, Int. J. Non-Linear Mechanics, 25, 2/3, 211-226
- 3. Banerjee B., Bajaj A.K., Davies P., 1996, Resonant dynamics of an autoparametric system: a study using higher – order averaging, Int. J. Non-Linear Mechanics, 31, 1, 21-39.
- 4. C¸ evik M., Pakdemirli M., 2005, Non-linear vibrations of suspension bridges with external excitation, Int. J. Non-Linear Mechanics, 40, 901-923
- 5. Ertas A., Chew E.K., 1990, Non-linear dynamics response of a rotating machine, Int. J. Non-Linear Mechanics, 25, 2/3, 241-251
- 6. Ji J.C., Leung A.Y.T., 2003, Non-linear oscillations of a rotor-magnetic be- aring system under superharmonic resonance conditions, Int. J. Non-Linear Mechanics, 38, 829-835
- 7. Moon B.Y., Kang B.S., 2003, Vibration analysis of harmonically excited non-linear system using the method of multiple scales, Journal of Sound and Vibration, 263, 1-20
- 8. Nayfeh A.H., Mook D.T., 1979, Nonlinear Oscilations, Wiley, New York
- 9. Rossikhin Yu.A., Shitikova M.V., 2006, Analysis of free non-linear vibrations of a viscoelastic plate under the conditions of different internal resonances, Int. J. Non-Linear Mechanics, 41, 2, 313-325
- 10. Sado D., 1997, The energy transfer in nonlinearly coupled two-degree-of-freedom systems, Publishing House of the Warsaw University of Technology, Mechanika, 166 [in polish]
- 11. Sado D., 2002, The chaotic phenomenons of a system with inertial coupling, Mechanics and Mechanical Engineering, 6, 1, 31-43
- 12. Sado D., 2004, The dynamics of a coupled three degree of freedom mechanical system, Mechanics and Mechanical Engineering, 7, 1, 29-40
- 13. Sado D., Gajos K., 2003, Note on chaos in three degree of freedom dynamical system with double pendulum, Meccanica, 38, 6, 719-729
- 14. Sado D., Gajos K., 2005, Applications of the method of multiple scales to three degree of freedom dynamical system with double pendulum, Proceedings of 8th Conference on Dynamical Systems Theory and Aplications, Lodz, Poland, December 12-15, 157-164
- 15. Samaranayake S., Bajaj K., 1993, Bifurcations in the dynamics of an orthogonal double pendulum, Nonlinear Dynamics, 4, 605-633
- 16. Shoeybi M., Ghorashi M., 2004, Saturation and its application I the vibration control of nonlinear systems, Proceedings of ESDA04, 7th Biennial Conference on Engineering System Design and Analysis, Manchester, United Kingdom, July 19-22, 1-8
- 17. Tondl A., Nabergoj R., 2004, The effect of parametric excitation on selfexcited three-mass system, Int. J. Non-Linear Mechanics, 39, 821-832
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM4-0007-0025