PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Satelitarna charakterystyka zachmurzenia ogólnego nad Svalbardem w roku 2007 w powiązaniu z cyrkulacją atmosfery

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The satellite cloud climatology in 2007 above Svalbard in relation to atmospheric circulation conditions
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono rozkład czasowy i przestrzenny zachmurzenia ogólnego nad Sval-bardem w 2007 r. Wszystkie prezentowane wielkości zachmurzenia wyliczono z maski chmur, będącej jednym z produktów powstałych w wyniku przetworzenia danych satelitarnych radiometru MODIS, umieszczonego na satelitach Terra i Aqua. Analizie poddano średnie miesięczne, średnią roczną oraz średnie zachmurzenie w po-szczególnych 11 typach uproszczonej klasyfikacji Niedźwiedzia, tak dla całej powierzchni archipelagu, jak i jego poszczególnych części.
EN
One of the fundamental problems in cloud climatology research is a lack of high spatial and temporal resolution data. Conventional, surface-based visual observations are limited to a small number of locations and represent atmospheric conditions only within a small vicinity of the stations. This is particularly true in the Arctic, which is inadequately sampled due to extreme weather condi-tions and maritime character of this area. As an alternative, satellite data can be utilized as a base for cloud climatology studies. In this paper Moderate Resolution Imaging Spectroradiometer (MODIS) observations are used as a source of cloud data for investigating the relation between total cloud cover and atmospheric circulation patterns over Svalbard. MODIS data were obtained as a Cloud Mask product – a 1 km resolution raster with four classes reflecting cloud detection confidence: 'confident clear', 'probably clear', 'uncertain clear' and 'certain cloudy'. Each class was arbitrary turned into fractional cloud cover as 0%, 33%, 66% and 100% respectively. Total number of 5607 MODIS passes over Svalbard was analyzed (about 16 a day). Area of study was divided into three regions – Spitsbergen (1) with subregions: 1a (north-western part), 1b (north-eastern part), 1c (southern part); Nordaustlandet (2); Barents Island and Edge Island (3). Mean monthly and annual cloud amount was calculated for each region as a ratio of cloudy pixels (weighted by 0%, 33%, 66% and 100%) to all pixels within given region/subregion. MODIS-derived information was then set against Niedźwiedź (2007) circulation type classification. Classification is an application of Lamb (1972) subjective classification, reduced in this study from 21 to 11 types: 5 cyclonic, 5 anticyclonic and 1 undetermined. As the results show, mean total cloud cover over Svalbard in 2007 amounted to 74%, varying from 61% in February up to 85% in August. The greatest mean monthly cloud cover (88%) was observed over Nordaustlandet in August, while the lowest (57%) over southern part of Spitsbergen in February. The cloudiest parts of Svalbard in 2007 were Nordaustlandet and Edge Island with 76% and 77% of annual mean cloud cover respectively – slightly more than Spitsbergen (73%). Spatial distribution of annual mean cloud cover Svalbard was controlled by topography and atmospheric circulation conditions. Atmospheric circulation over Svalbard in 2007 was dominated by advection from N-E-S directions and non-advective situations (center of cyclone or cyclonic trough). Average cloud cover was nearly constant throughout all circulation types, ranging from 74% (cyclonic advection from S+SE) to 77% (cyclone's center or cyclonic trough). Most diverse spatial distribution of cloud cover was observed during the days of central anticyclonic situations and anticyclonic wedge, while least diverse when cyclone's center, cyclonic trough or anticyclonic advection from S+SW occurred. MODIS-derived cloud cover variability can be well explained by circulation influence, e.g. foehn effect associated with anticyclonic E+SE advection, cloud amount increase as a result of S+SW or W+NW cyclonic advection from Norwegian Sea. Although annual course of cloud cover, as determined with satellite information, seems reliable, future studies should emphasise a comparison of MODIS data with surface based observations. Temporal coverage should be also expanded to years 2003-2008 in order to obtain statistically significant results.
Rocznik
Tom
Strony
127--140
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
autor
  • Zakład Systemów Informacji Geograficznej, Kartografii i Teledetekcji, IGiGP, Uniwersytet Jagielloński ul. Gronostajowa 7, 30–387 Kraków, andrzej.kotarba@uj.edu.pl
Bibliografia
  • 1. Ackerman S.A., Strabala K.I., Menzel W.P., Frey R.A., Moeller C.C., Gumley L.E., 1998. Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research, 103: 32141-32157.
  • 2. Barnes W. L., Pagano T.S., Salomonson V.V., 1998. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Transactions on Geoscience and Remote Sensing, 36: 1088-1100.
  • 3. Berger F.H., 1995. The variability of cloud cover and cloud forcing inferred from NOAA AVHRR data for the North Sea. Advances in Space Research, 16: 1029-1032.
  • 4. Hatzianastassiou N., Cleridou I., Vardavas I., 2001. Polar cloud climatologies from ISCCP C2 and D2 datasets. Journal of Climate, 14: 3851-3862.
  • 5. Karlsson K.-G., 1997. Cloud climate investigation in the Nordic Region using NOAA AVHRR data. Theoretical and Applied Climatology, 57: 181-195.
  • 6. Key E.L., Minnett P.J., Jones, R. A., 2004. Cloud distribution over the coastal Arctic Ocean: surface based and satellite observations. Atmospheric Research, 71: 57-88.
  • 7. Lamb H.H., 1972. British Isles Weather types and register of the daily sequences of circulation patterns 1961-1971. Geophysical Memoirs, 116: 85 s.
  • 8. Liu Y., Key J.R., Frey R.A., Ackerman S.A., Menzel W.P., 2004. Nighttime polar cloud detection with MODIS. Remote Sensing of Environment, 92: 181-194.
  • 9. Lubin D., Morrow E., 1998. Evaluation of an AVHRR cloud detection and classification method over the central Arctic Ocean. Journal of Applied Meteorology, 37: 166-183.
  • 10. Menzel W.P., Frey R.S., Zhang H., Wylie D.P., Moeller C.C., Holz R.E., Maddux B., Baum B.A, Strabala K.I., Gumley L.E., 2008. MODIS global cloud-top pressure and amount estimation: algorithm description and results. Journal of Applied Meteorology and Climatology, 47: 1175-1198.
  • 11. Niedźwiedź T., 1992. Wybrane problemy klimatologii synoptycznej Spitsbergenu. Problemy Klimatologii Polarnej, 2: 77 - 84.
  • 12. Niedźwiedź T., 1992-1993. Zmienność cyrkulacji atmosferycznej nad Spitsbergenem. Folia Geographica, series Geographica Physica, vol. XXIV - XXV: 58-97.
  • 13. Niedźwiedź T., 1997. Wieloletnia zmienność wskaźników cyrkulacji atmosfery nad Spitsbergenem i ich rola w kształ-towaniu temperatury powietrza. Problemy Klimatologii Polarnej, 7: 19-40.
  • 14. Niedźwiedź T., 2001. Zmienność cyrkulacji atmosfery nad Spitsbergenem w drugiej połowie XX wieku. Problemy Klimatologii Polarnej, 11: 7-26.
  • 15. Niedźwiedź T., 2007. Kalendarz typów cyrkulacji nad Spitsbergenem: grudzień 1950 - grudzień 2006 (zbiór kom-puterowy w Katedrze Klimatologii, Wydział Nauk o Ziemi Uniwersytetu Śląskiego, Sosnowiec).
  • 16. Niedźwiedź T., Ustrnul Z., 1989. Wpływ cyrkulacji atmosferycznej na kształtowanie się zachmurzenia w Horn-sundzie. XVI Sympozjum Polarne, Dorobek i Perspektywy Polskich Badań Polarnych. Uniwersytet Mikołaja Kopernika, Toruń: 158-160.
  • 17. Marsz A.A., 2007. Zachmurzenie i usłonecznienie. [w:] Marsz A.A., Styszyńska A. [red.] Klimat rejonu Polskiej Stacji Polarnej w Horsundzie - stan, zmiany i ich przyczyny. Wydawnictwo Akademii Morskiej w Gdyni: 87-115.
  • 18. Minnis P., Spangenberg D.A., Chakrapani V., 2003. Distribution and validation of cloud cover derived from AVHRR data over the Arctic Ocean during the SHEBA year. Proceedings of the 13th ARM Science Team Meeting, Broomfield, Colorado, 31 marca - 4 kwietnia 2003.
  • 19. Przybylak R., 1996. Zmienność cyrkulacji atmosfery w Arktyce w okresie 1939-1990. Problemy Klimatologii Po-larnej, Gdynia, 5: 133-147.
  • 20. Raschke E., 1987. Raport z International Satellite Cloud Climatology Project Project (ISCCP). Workshop on Cloud Algorithms in the Polar Regions, WMO/TD-170.
  • 21. Rossow W.B., Walker A.W., Garder L.C., 1993. Comparison of ISCCP to other cloud amounts. Journal of Climate, 6: 2394-2418.
  • 22. Shi T., Clothiaux E.E., Yu B., Braverman A.J., Groff D.N., 2007. Detection of daytime arctic clouds using MISR and MODIS data. Remote Sensing of Environment, 107: 172-184.
  • 23. Shiffer R.A., Rossow W.B., 1983. The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research program. Bulletin of the American Meteorological Society, 64: 779-784.
  • 24. Spangenberg D.A., Doelling D.R., Chakrapani V., Minnis P., Uttal T., 2002. Nighttime Cloud Detection Over the Arctic Using AVHRR Data. Proceedings of the 12th ARM Science Team Meeting, St. Petersburg, Floryda, 8-12 kwietnia 2002.
  • 25. Turner J., Marshall G.J., Ladkin R.S., 2001. An operational, real-time cloud detection scheme for use in the Antarctic based on AVHRR data. International Journal of Remote Sensing, 22: 3027-3046.
  • 26. Vemury S., Stowe L.L., Anne V.R., 2001. AVHRR pixel level clear sky classification using dynamic thresholds (CLAVR-3). Journal of Atmospheric and Oceanic Technology, 18: 169-186.
  • 27. Welch R.M., Sengupta S.K., Goroch A.K., Rabindra P., Rangaraj N., Navar M.S., 1992. Polar cloud and surface classification using AVHRR imagery: an interspersion of methods. Journal of Applied Meteorology, 31: 405-420.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM3-0023-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.