Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the behaviour of viscoelastic solids under multiaxial loads

Treść / Zawartość
Warianty tytułu
Języki publikacji
On the basis of modified Hooke’s law for multiaxial stress in viscoelastic solids, threedimensional constitutive equations for strains have been derived. It is shown that after application or removal of triaxial static load, normal and shear strain components vary in course of time proportionally to each other and that in-phase stress components produce in-phase strain components. Harmonic out-of-phase stress as well as multiaxial periodic and stationary random stresses are also considered. The matrix of dynamical flexibility of viscoelastic materials is determined which depends on three material constants (Young modulus, Poisson’s ratio and coefficient of viscous damping of normal strain) and load circular frequency.
Opis fizyczny
Bibliogr. 15 poz.
  • Mechanic-Electric Faculty, Polish Naval Academy Śmidowicza 69 81-103 Gdynia POLAND phone : +48 58 626 27 89
  • 1. Panovko J.G.: Internal Friction at Vibrations of Elastic Systems (in Russian). Fizmatgiz, Moscow, 1960
  • 2. Lubahn J.D., Felgar R.P.: Plasticity and Creep of Metals. J. Wiley & Sons, New York, 1961
  • 3. Blake A. (Ed.): Handbook of Mechanics, Materials and Structures. J. Wiley & Sons, New York, 1985
  • 4. Kolenda J.: Modification of Hooke’s law for multiaxial stress in viscoelastic solids. Polish Maritime Research, 2, 2007
  • 5. Haslach H.W., Jr., Armstrong R.W.: Deformable Bodies and Their Material Behaviour. J. Wiley & Sons, 2004
  • 6. Kolenda J.: Criteria in design for finite fatigue life under multiaxial static and dynamic loadings. Marine Technology Transactions, Vol. 10, 1999
  • 7. Kolenda J.: A modification of distortion-energy theory at staticdynamic random loading. Polish Maritime Research, 2, 1999
  • 8. Papoulis A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York, 1984
  • 9. Preumont A.: Vibrations aléatoires et analyse spectrale. Presses Polytechniques et Universitaires Romandes, CH-1015, Lausanne, 1990
  • 10. Stadler W.: Natural structural shapes (the static case). Quarterly Journal of Mechanics and Applied Mathematics, Vol. XXXI, Pt. 2, 1978
  • 11. Pisarenko G.S., Lebedev A.A.: Resistance of Materials to Deformation and Failure in Complex Stress State (in Russian). Izd. Naukova Dumka, Kiev, 1969
  • 12. Nashif A.D., Johnes D.I.G., Henderson J.P.: Vibration Damping. J. Wiley & Sons, New York, 1985
  • 13. Osiński Z.: Damping of Mechanical Vibrations (in Polish). PWN, Warszawa, 1979
  • 14. Giergiel J.: Damping of Mechanical Vibrations (in Polish). PWN, Warszawa, 1990
  • 15. Kruszewski J., Wittbrodt E., Walczyk Z.: Vibrations of Mechanical Systems in Computer-Based Approach (in Polish). Vol. 2, WNT, Warszawa, 1993.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.