Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper a new continuous model for vibration analysis of a beam with an open edge crack is presented. A quasi-linear displacement filed is suggested for the beam and the strain and stress fields are calculated. The equation of motion of the beam is calculated using the Hamilton principle. The calculated equation of motion is solved with a modified weighted residual method and the natural frequencies and mode shapes are obtained. The results are compared with those obtained by finite element method and an excellent agreement has been observed. The presented model is a simple and accurate method for analysis of the cracked beam behavior near or far from the crack tip.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
32--39
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
autor
autor
- Mechanical Engineering Department, Sharif University of Technology 11155-9567, Azadi Avenue, Tehran, IRAN, m_behzad@sharif.edu
Bibliografia
- 1. Dimarogonas A. D.: Vibration of cracked structures-A state of the art review, Engineering Fracture Mechanics, Vol. 5, pp. 831-857, 1996
- 2. Wauer Jorg: On the dynamics of cracked rotors: A literature survey, Applied Mechanics Reviews, Vol. 43,1, pp. 13-17, 1990
- 3. Gasch R.: A survey of the dynamic behavior of a simple rotating shaft with a transverse crack, Journal of sound and vibration, Vol. 160(2), pp 313-332, 1993
- 4. Dimarogonas A. D., Paipetis S. A.: Analitical methods in rotor dynamics, London, Applied science publisher, 1983
- 5. Zheng D. Y., Fan S. C.: Vibration and stability of cracked hollow-sectional beams, Journal of sound and vibration, Vol. 267, pp. 933-954, 2003
- 6. Yanga J., Chena Y., Xiangc Y., Jiaa X. L.: Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load, Journal of Sound and Vibration 312, 166–181, 2008
- 7. Hai-Ping Lin: Direct and inverse methods on free vibration analysis of simply supported beams with a crack, Engineering structures, Vol. 26(4), pp. 427-436, 2004
- 8. Zheng D. Y., Fan S. C.: Vibration and stability of cracked hollow-sectional beams, Journal of sound and vibration, Vol. 267, pp. 933-954, 2003
- 9. Loyaa J. A., Rubiob L., Fernandez-Saeza J.: Natural frequencies for bending vibrations of Timoshenko cracked beams, Journal of Sound and Vibration 290, 640–653 2006
- 10. Orhan S.: Analysis of free and forced vibration of a cracked cantilever beam, NDT&E International 40, 443–450, 2007
- 11. Yang X. F., Swamidas A. S. J. and Seshadri R.: Crack identification in vibrating beams using the energy method, Journal of sound and vibration, Vol. 244(2), pp. 339-357, 2001
- 12. Jialai Wanga, Pizhong Qiaob: Vibration of beams with arbitrary discontinuities and boundary conditions, Journal of Sound and Vibration 308, 12–27, 2007.
- 13. Christides S., Barr A. D. S.: One-dimensional theory of cracked Bernoulli-Euler beams, Journal of mechanical science, Vol. 26(11/12), pp. 639-648, 1984
- 14. Shen M. H. H., Pierre C.: Natural modes of Bernoulli-Euler beams with symmetric cracks, Journal of sound and vibration, Vol. 138(1), pp. 115-134, 1990
- 15. Shen M. H. H., Pierre C.: Free vibrations of beams with a single-edge crack, Journal of sound and vibration, Vol. 170(2), pp. 237-259, 1994
- 16. Carneiro S. H. S., Inman D. J.: Comments on the free vibration of beams with a single-edge crack, Journal of sound and vibration, Vol. 244(4), pp. 729-737, 2001
- 17. Chondros T. G., Dimarogonas A. D. and Yao J.: A continuous cracked beam vibration theory, Journal of Sound and Vibration, Vol.215(1), pp. 17-34, 1998
- 18. Chondros T. G., Dimarogonas A. D. and Yao J.: Vibration of a beam with breathing crack, Journal of Sound and Vibration, Vol. 239(1), pp. 57-67, 2001
- 19. Tada H., Paris P. C. and Irvin G. R.: The stress analysis of cracks handbook. Hellertown, Pennsylvania: Del Research Corp., 1973.
- 20. ANSYS User’s Manual for rev. 8, ANSYS Inc., 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM3-0018-0027