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INTRODUCTION

For the purpose of solving physical problems considered 
in the present paper, it is assumed that an engineering detail is 
made of a homogeneous isotropic metal and loaded below the 
yield point. The elastic behaviour of a particular homogeneous, 
isotropic metal at a given temperature is completely defined
by the Young modulus and the Poisson’s ratio [1, 2]. However, 
even in the region below the proportional limit metals are 
not perfectly elastic. If a load is suddenly applied and then 
maintained constant, a small amount of “creep” will always 
be observed [1]. This creep is due to anelastic strain which 
may arise from any of several sources, such as the presence 
of grain boundaries, twin boundaries, or slip bands, the 
diffusion of interstitial solute atoms and the phenomenon of 
magnetostriction. Particular attention is focused on anelastic 
strain in the vibration theory of continuous systems [3, 4]. To 
exemplify the problem, let us mention that contrary to free 
vibrations of perfectly elastic systems where the principle 
of energy conservation may be assumed, in reality the initial 
energy of isolated vibrating systems diminishes with time as 
a result of energy dissipation caused by damping properties 
of structural materials. This phenomenon is very complex but 
there are several approximate models of anelastic materials and 
damping mechanisms which are simple enough to be accepted 
in practice, for instance the Kelvin-Voigt′s model (spring and 
dashpot in parallel) and hysteretic damping [3-6]. In the present 
paper, the Kelvin-Voigt′s model is applied to viscoelastic 
materials under three-dimensional loads. The second part of 
this paper, to be published separately, will be devoted to the 
applications of relationships contained herein, with an emphasis 
made on the behaviour of viscoelastic solids under multiaxial 
loads and dissipation energy.
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ABSTRACT

On the basis of Hooke’s law for multiaxial stress in elastic solids, similar relationships for 
viscoelastic materials are considered. It is assumed that the material is homogeneous and 
isotropic, and that the Kelvin-Voigt’s model is applicable to normal strain components. An 
analogous model is also taken for shear strain components. It is shown that the ratio of 
coefficients of viscous damping of normal and shear strain components is equal to the ratio
of Young modulus and shear modulus. As a result, the modified Hooke’s law for multiaxial
stress in viscoelastic materials has been formulated which includes three material constants: 

Young modulus, Poisson’s ratio and coefficient of viscous damping of normal strain.
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HOOKE’S LAW

When structures, machines, and engineering details are in 
service, they are usually subjected to surface forces or body 
forces (inertial, gravitational, or electromagnetic) that cause 
combined stresses in their elements. To completely define an
element, it is necessary to specify the components of the stress 
tensor represented by the array:

(1)

where σ are the normal stress components and τ are the shear 
stress components on three orthogonal planes passing through 
the point. If surface couples and body couples may be ignored, 
the number of independent stress components reduces from nine 
to six since then τxy = τyx, τyz = τzy, and τzx = τxz Consequently, 
deformation produced by stress components can be completely 
specified by six strain components: normal ones εx, εy, εz and 
shear ones γxy, γyz, γzx. The Hooke’s law states that in elastic solids 
between these components the following relations hold [7, 8]:

(2)
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Here E is the Young modulus, υ is the Poisson’s ratio, 
and:

(3)

is the shear modulus.
For any combination of loads, there exist at any point three 

orthogonal planes upon which only normal stress components 
act. These are the principal stresses, designated in declining 
order of magnitude: σ1, σ2, and σ3. Therefore, for the particular 
case where x, y and z are the principal directions, Eqs (2) 
yiel:

(4)

From Mohr’s stress and strain circles [7, 8] it follows that 
the maximum shear stress and the maximum shear strain are:

τ = 0.5(σ1 – σ3)                             (5)

γ = 2ε1                                                              (6)

The relationship between τ and γ reads:

Gγ = τ                                     (7)

For the given stress state that:

σ1 = – σ3 , σ2 – 0                          (8)

one gets:

Eε1 = σ1 – υ(0 – σ1) = σ1(1 + υ)             (9)

τ = σ1                                 (10)

HOOKE′S LAW FOR VISCOELASTIC 
MATERIALS

Let us consider what happens to a long rod of homogeneous 
isotropic material if a tensile force is applied to the end of the rod 
in the direction x parallel to its length. Of course, this rod will 
exhibit a uniform tensile strain εx produced by the stress σx.

For elastic state:

Eεx = σx                               (11)

Also, it will be observed that the fractional change in 
diameter is proportional to the axial strain and such that:

εy = – υεx , εz = – υεx                 (12)

If the force and, consequently, the stress σx is time-
dependent:

σx = σx(t)                           (13)

it is assumed that Eqs (12) are also valid, i.e.:

εy(t) = – υεx(t) , εz(t) = – υεx(t)             (14)

Differentiation of Eqs (14) with respect to time gives:

(15)

In order to account for viscoelastic properties of the rod in 
this case by means of the Kelvin-Voigt’s model, Eqs (11) and 
(12) must be replaced by:

(16)

εy = – υaεx , εz = – υaεx                     (17)

where η is the coefficient of viscous damping of normal strain,
and [9]:

υa = υe + υs + υc                          (18)

In Eq. (18), υa is the Poisson′s ratio in the case of anelastic 
strain, υe is related to elastic deformations, υs is caused by 
microslips, and υc reflects the influence of microcracks. If the
load is such that the solid remains in elastic state, then:

υa = υe = υ , υs = υc = 0                  (19)

Since experiments show that Eq. (19) corresponds very 
closely to the behaviour of many solids under small loads [9], 
in what follows Eqs (12), (14) and (15) will be applied.

Now we shall compute the normal strain in the x-direction 
caused by normal stresses in the y- and z-directions, where x, 
y and z are any three mutually perpendicular directions.

For the strain due to σy, one gets analogously to Eq. (16):

(20)

Thus:

(21)

But in this case:

(22)

so that:

(23)

Similarly, for the stress in the z-direction one obtains:

(24)

Eqs (16), (23) and (24) are linear. These equations and 
principle of superposition lead to the following equation for 
the strain in x-direction:

(25)

Equations for the strains in the other directions can be found 
in the same way.

When x, y and z are the principal directions, Eq. (25) 
becomes:

(26)

For the stress state described by equations:

σ1(t) = – σ3(t) , σ2 = 0                      (27)

we have from Eq. (26):

(28)

Now let us assume that for viscoelastic solids loaded below 
the yield point, the maximum shear stress and strain can be 
expressed by Eqs (5) and (6), determined for elastic solids.

Differentiation of Eq. (6) with respect to time yields

(29)

Analogously to Eq. (16) for normal strain component, for 
viscoelastic materials and shear strain component instead of 
Eq. (7) one can write [3, 4]:

(30)

where λ is the coefficient of viscous damping of the shear
strain. 

By Eq. (28):

(31)
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Through Eqs (6), (10) and (29), Eq. (31) takes on the 
form:

(32)
that is:

(33)

From comparison of Eqs (30) and (33) it is seen that:

(34)

Summarizing, the modified Hooke’s law for multiaxial 
stress in viscoelastic solids can be expressed as:

(35)

where:

(36)

Another derivation of Eqs (34) and (35) can be found in 
[10].

Eqs (35) can be rewritten in the following alternative 
forms:

(37)

or

(38)

When x, y and z are the principal directions with respects 
to stress, Eqs (37) become:

(39)

It means that, contrary to the stress-strain relations (4) in 
perfectly elastic solids, viscoelastic materials subjected to 
normal stress components may exhibit not only normal but 
also shear strain components (for instance after removal of 
a shear load).

Eqs (35) and (37) through (39) present the modified
stress-strain relations in viscoelastic solids under triaxial load 
conditions. In what follows those in simpler load cases are 
listed.

Plane stress (σz = τyz = τzx = 0)

(40)

and

(41)

Plane stress (εz = γyz = γzx = 0)

(42)

and

(43)
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Uniaxial stress (σz ≠ 0) 

(44)

and

(45)

Shear stress (τxy ≠ 0) 

(46)

and

(47)

As it is seen, the two-parameter Kelvin-Voigt’s model 
of viscoelastic materials leads to relatively simple stress-
strain relations. The stress-strain relations based on the 
three-parameter model of viscoelastic materials (spring and 
Maxwell’s model in parallel) are given in [11].

CONCLUSIONS

 The Hooke’s law for multiaxial stress in elastic solids has 
been modified to account for damping properties of real
materials.

 The Kelvin-Voigt’s model for viscoelastic materials has 
been applied to normal and shear strain components.

 The viscoelastic behaviour of a homogeneous, isotropic 
material at a given temperature is completely defined by
Young modulus E, Poisson’s ratio υ and coefficient η of
viscous damping of normal strain.

 The aforementioned constants can be determined in 
a uniaxial test.

 It is shown that

(48)

 where G is the shear modulus and λ is the coefficient of
viscous damping of shear strain.

NOMENCLATURE

E – Young modulus
G – shear modulus
t – time
x, y, z  – three mutually perpendicular directions
γ – shear strain component
ε – normal strain component
η – coefficient of viscous damping of normal strain
λ – coefficient of viscous damping of shear strain
υ – Poisson’s ratio
σ – normal stress
τ – shear stress
1, 2, 3 – principal directions
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