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INTRODUCTION

One of the elements subjected to hydromechanical analysis 
during ship design are its manoeuvrability qualities. In 2002 
IMO adopted its MSC.137(76) resolution on “Standards for 
ship manoeuvrability” which imposed relevant requirements on 
manoeuvrability parameters of new ships. Therefore it seems 
reasonable to elaborate tools for assessing such qualities. In 
this work a method based on application of neural networks 
was proposed. Such networks have been already used for 
similar purposes. Clausen et al. [3] proposed to use neural 
networks to determine ship main dimensions in preliminary 
design stage. Koushan [7, 9] presented possible approximations 
of propeller-generated pressures and rudder forces, by using 
neural networks. Cepowski [2] applied the method in question 
to assessment of ship sea-keeping qualities.

In this work were analyzed possible application of neural 
networks to two typical manoeuvres performed during sea 
trials of single propeller ship, namely : the circulation test 
with ship rudder laid right by 35° and the 10°/10° zig-zag test 
. The choice of the tests was conditioned by the fact of their 
standardization in IMO regulations. The presented work was 
aimed at elaboration of a method making it possible to perform 
multi-variant, simultaneous analysis of design solutions without 
necessity of multiple repetition of calculations by means of 
a simulator.

To simulate and form the networks the MATLAB 
environment with application of the Neural Network Toolbox 
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package was used [9]. A dynamic simulator being a part of 
Tribon Initial Design software was used as a source of learning 
data. The Tribon System is based on numerical solving the 
well-known differential equations of two-dimensional motion 
of ship:

 
   (1)

The right-hand sides of the equations represent the inertial 
terms including added masses, and their left-hand sides – the 
hydrodynamic forces : acting on ship hull – (XH, YH, NH), on 
propeller – (XP), on rudder – (XR,YR,NR), as well as due to 
such disturbances as wind and wave – (XE, YE, NE). Despite the 
learning data were supplemented by available sea trial results, 
their prevailing part was provided by the simulator.Hence 
the elaborated networks can be considered to be a simplified
algebraic form of the Eqs. (1). 

The full set of network learning and testing data comprised 
260 cases having systematically changeable parameters. The 
set was divided in random into the learning set which took part 
in the process of calculation of network weighing factors and 
which comprised 230 cases, and the testing set which served 
solely to assess network quality and which did not take part 
in learning process and comprised 30 cases. The analysis of 
parameters in question covered the data presented in Tab.1.
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Tab.1. Variability range of parameters of analyzed ships

Parameter Maximum value Minimum value

LPP [m] 260.0 90.0
B [m] 50.0 12.0
T [m] 15.0 4.6
CB [-] 0.85 0.6

LPP/B [-] 7.9 4.1
B/T [-] 6.0 2.2

LPP/T [-] 29.8 14.1

The propeller pitch ratio P/D was equal to 1 for all learning 
cases. The learning data relate to manoeuvres executed in water 
of unlimited depth. For both the manoeuvres the same rate of 
laying the rudder, equal to 2°/s, was assumed.

The input data were normalized within the interval (1,-1) 
in accordance with the following relationship:

(2)

where: 
ymax, ymin - assumed limits of normalization interval, in the 

considered case: ymax = 1, ymin = -1
xmin - minimum value in a given row of data,
xmax - maximum value in a given row of data.

For all elaborated networks one neuron activation function 
was applied. It has the following form:

(3)

where:
xi - input value.

The run of the applied activation function is shown in Fig. 1.

Fig. 1. The applied neuron activation (saturation) function.

ARTIFICIAL NEURAL NETWORKS

There is no commonly accepted, unambiguous definition
of artificial neural network (SSN). It can be said that the SSNs
are an attempt to connect human brain possibilities of parallel 
processing with speed and precision of computer processors. 
Such connection provides, to the networks, capability of 
learning, memorizing, calling and comparing the nonolinear, 
multi-dimensional structures of data in order to interpolate 
and extrapolate them appropriately. The traditionally applied 
modelling methods consist in collecting data and attempting 
to combine them into known physical, chemical or mechanical 
relationships. In such case to linearize mathematical models 
is necessary to make them simpler for analyzing. The method 
based on neural networks consists in an attempt to understand 

a modeled system as an entity of relations occurring within its 
structure and it searches all linear and nonlinear relations which 
can influence its operation. Some neural networks constitute 
models of biological neural structures,but the other ones do 
not. However historically, most inspirations in the field of
neural networks come from a desire of creating an artificial
system capable of executing complex, possibly ‘intelligent’ 
calculations similar to those regularly done by human brain.

Neural network structure is comprised of several processing 
units capable of mutual communicating by means of connections 
having different weighing factors. Generally, not every neural 
network has its structure similar to that shown in Fig. 2., which 
consists of the following elements:
 Input layer – used for receiving and processing external 

signals,
 Hidden layers (or only one layer)- whose signals remain 

within the network,
 Output layer – used for sending signals outside.

Each layer can be composed of several single neurons, and 
number of neurons in input and output layers is determined by 
a kind of task to be solved (number of variables and results).

Fig. 2. Example structure of neural network 

Neurons of particular layers can be additionally connected with 
external elements which serve as constant values and improve 
effectiveness of network learning process. In order to clearly 
present the operational principle of neural networks, making 
use of idea of a single neuron is most effective (Fig. 3):

Fig. 3. Single neuron.

Calculation of the output value yi for a single neuron is 
performed in accordance with the following relationship:

(4)

where: 
F - applied activation function



17POLISH MARITIME RESEARCH, No 2/2008

Wi    - weighing factors for particular connections
xj   - input value
Wi0   - constant values attributed to particular connections.

For given constant values and weighing factors it is easy 
to generalize the above presented relationship for an arbitrary 
number of layers and number of neurons in a given layer by 
using linear algebraic equations. The basic task in applying 
neural networks is to calculate constant values and weighing 
factors for a given network structure. The task is realized during 
learning process. The often used learning method is that called 
back-propagation one, applied in this work and presented in 
detail by Osowski [11].

The first operation in the learning process is to prepare
two sequencies of data : learning one and verifying one. The 
learning sequence constitutes a set of such data which relatively 
exactly characterize a given problem. A single portion of the 
data is called the learning vector. It contains the input vector, 
i.e. the input data delivered to network input points, and output 
vector, i.e. the data expected to be generated by the network at 
its output points. After processing the input vector, the teacher 
compares the obtained values and expected ones and informs 
the network on whether the response is correct or not, if not 
– on how large error of the response resulted. The error is then 
propagated within the network but in the opposite sequence 
than that of the input vector (i.e. from output layer to input one) 
and on its basis an appropriate correction of weighing factors is 
introduced to each neuron in order to obtain a lower response 
error as a result of the repeated processing of the same input 
vetor. Such procedure is repeated again and again until the error 
generated by the network is lower than that assumed. Then the 
successive input vector is delivered to the network input points 
and the described operations are repeated. After processing the 
entire learning sequence (called the epoch) the error for the 
epoch is calculated and the entire cycle is repeated until the error 
drops under its allowable value. As mentioned above, the SSNs 
show certain tolerance for discontinuities, random disturbances 
or even small shortages in the learning set. It just results from 
their capability of generalizing the knowledge.

The verification process of network operation follows
the learning process. In this moment it is important to put in 
the network some specimens not coming from the training 
set, in order to check if the network is capable of effective 
generalizing the learned task. To this end is used the verifying 
sequence which has the same features as the learning one, i.e. 
its data charecterize the problem exactly and exact responses 
are known. However it is important to select the data which 
have not been used earlier for learning. This way the verifying 
sequence is presented, however the difference is that errors 
generated in the process are not propagated back but only 
number of correct responses is recorded and on this basis the 
statement is made if the network in question satisfies imposed
requirements i.e. to which extent it has been learned.

The initial weighing factors with which a given network 
starts learning, are numbers generated at random. After learning 
process it is always favourable to repeat all the procedure 
beginning from generation of initial weighing factors, in order 
to check the obtained results.

In the case of large networks and learning sequences 
consisted of many thousands of learning vectors, number 
of calculations to be executed during all the learning cycle 
is gigantic, hence time-consuming. Also, it does not happen 
that a network is correctly built at once but always it becomes 
a result of many trials and errors. Moreover it can be never 
quarranteed that even a correct network does not come to a local 
minimum instead to continue finding global one. Therefore

algorithms realizing the SSNs are fitted with mechanisms which
make it possible to control speed and quality of learning. These 
are the so called learning and momentum coefficients. They
influence steepness of activation function and control speed of
influence of change of weighing factors on learning process.

CALCULATIONS 
FOR CIRCULATION TESTS 

To simulate the circulation manoeuvre a network of  9x12x7 
structure was elaborated. The input values to the network 
(arguments) were in turn the following : the ship length 
between perpendiculars, LPP, ship breadth B, ship draught T, 
block coefficient of ship hull underwater part, CB, longitudinal 
position of ship centre of gravity, LCG, propeller diameter D, 
ship speed at the beginning of the circulation manoeuvre, VAPP, 
rudder aspect ratio λ and the total rudder area AR. 

The neural network outputs were the following : transverse 
and head translations (transfer and advance) at ship course 
change by 90°, tactical diameter of circulation and head 
translation for the course change by 180°, steady circulation 
diameter, total decrease of ship speed at course change by 360°, 
V/VAPP, as well as the drift angle β during steady circulation.

The elaborated structure is presented in Fig. 4. 

Fig. 4. Neural network for circulation manoeuvre

In Fig. 5 the run of the network learning process is shown. 
It can be observed that after about 300 epochs of learning 
the network did not exhibit any further improvement of 
approximation quality.

Fig. 5. Run of network learning process for circulation manoeuvre

The simulation of the manoeuvre was performed on the basis 
of a case selected from the testing set. The results of the simulation 
compared with the expected values are presented in Fig. 6.

It can be observed that for the course angle change by 90° 
the network error is of the order of the ship breadth. In the 
case of the course angle change by 180° the error is somewhat 
smaller - equal to about a half of the ship breadth. The drift 
angle at steady circulation is of a similar order. The difference 
of diameters at steady circulation is almost imperceptible. For 
purposes of this presentation one case characterized by the 
greatest errors was selected out of 30 testing ones.
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testing values, and in Fig. 8 – the correlation of values of the 
head translation at the course change by 90°.

Example results of network prediction values compared 
with relevant testing ones are shown in Tab. 2. The values 
concerning the translations (distances) are related to the ship 
length. Apart from the tests of correlation between results 
obtained from the network and testing cases, also capability 

Fig. 6. Results of simulation of neural network for circulation manoeuvre

In Fig. 7. is presented the correlation between the drift 
angle values determined by means of neural networks and its 

Tab. 2. Example simulation quality of neural network used for assessment of circulation parameters

Te
st

in
g 

va
lu

es

Course change Parameter Values

90º
Advance/L [-] 3.12 3.27 3.77 3.70 3.69 3.40 2.69 3.11

Transfer/L [-] 1.54 1.67 1.98 1.89 2.01 1.62 1.19 1.29

180º
Tactical diameter [-] 3.34 3.58 4.19 3.99 4.38 3.52 2.62 2.82

Advance/L [-] 1.90 2.13 2.34 2.30 2.15 2.35 1.96 2.10

Steady circulation

Diameter [-] 2.62 2.32 2.86 2.64 3.34 2.31 1.65 1.92

V/Vapp [-] 0.53 0.38 0.44 0.42 0.56 0.37 0.33 0.41

Drift angle [º] 13.13 15.29 12.96 14.50 12.34 17.42 18.91 16.96

N
eu

ra
l n

et
w

or
k

90º
Advance/L [-] 3.09 3.23 3.71 3.6 3.74 3.38 2.74 2.92

Transfer/L [-] 1.47 1.65 1.94 1.88 2.03 1.62 1.22 1.3

180º
Tactical diameter [-] 3.21 3.57 4.12 4.01 4.41 3.55 2.67 2.85

Advance/L [-] 1.99 2.09 2.32 2.29 2.19 2.32 1.99 2.06

Steady circulation

Diameter [-] 2.63 2.34 2.86 2.7 3.31 2.38 1.62 1.96

V/Vapp [-] 0.55 0.38 0.46 0.43 0.55 0.39 0.33 0.43

Drift angle [º] 13.06 15.63 12.95 13.97 12.25 17.13 19.34 16.84

Relative error in [%] of a given value

1 1 2 3 1 1 2 7

5 1 2 1 1 0 3 1

4 0 2 0 1 1 2 1

5 2 1 1 2 1 1 2

0 1 0 2 1 3 2 2

4 1 5 1 2 5 1 4

1 2 0 4 1 2 2 1

Fig. 7. Correlation between values of the drift angle at steady circulation, 
obtained from the network, and relevant testing values.
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of the elaborated networks, related to modeling the general 
trends of circulation parameters, was analyzed. In Fig. 9 is 
presented an example of the testing of influence of the ship
hull block coefficient CB on circulation parameters by using 
the elaborated networks. 

Fig. 9. Testing of the trend representing capability of the elaborated 
networks. Influence of ship hull block coefficient.

CALCULATIONS FOR ZIG-ZAG TESTS

To simulate the zig-zag test the network of 9 x 11 x 5 
structure was elaborated. Inputs to the network were identical as 
for the circulation test. It was the following parameters: duration 
time of the course change by 10° (initial turning time), ta; 1st 
and 2nd overshoot angle, Δψ1, Δψ2 ; 1st and 2nd time to check 
yaw (time of rudder inertia angle), t1, t2. The network structure 
is shown in Fig. 10. The run of the network learning process 
is shown in Fig. 11. The learning process was terminated after 
600 epochs.

In Fig. 12 are presented results of the zig-zag test simulation 
compared with those of the test case. Errors in representing 
particular time values and overshoot angles are contained within 
a few percent interval of relevant values. In Fig. 13 and 14 is 

presented correlation between the test values for the 1st and 
2nd overshoot angle and the relevant values approximated by 
the neural network.

Fig. 11. Run of learning process of the network for zig-zag test

Fig. 12. Results of zig- zag test simulation by using the neural network

Fig. 13. Approximation quality of the neural network, based on the 
correlation for the 1st overshoot angle

Fig. 8. Correlation between values of the head translation at the course 
change by 90°, obtained from the network, and relevant testing values.

Fig. 10. Neural network for simulation of zig-zag test
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The example results of the zig-zag test prediction, compared with relevant test values are given in Tab. 3. The obtained 
prediction quality is somewhat worse than that in the case of simulation of circulation manoeuvre. 

Tab. 3. Example simulation quality of the neural network used for assessment of zig-zag test parameters
Te

st
 v

al
ue

s
Parameter Values

1st overshoot angle. Δψ1 [º] 7.87 7.30 6.05 7.33 6.21 11.45 8.38 5.66
2nd overshoot angle. Δψ2 [º] 9.12 10.49 8.78 10.76 8.44 13.36 11.69 6.68
Initial Turning Time. ta [s] 32.00 38.00 62.00 36.00 38.00 28.00 34.00 32.00
1st Time to check yaw. t1 [s] 18.00 24.00 34.00 24.00 20.00 22.00 26.00 16.00
2nd Time to check yaw. t2 [s] 20.00 28.00 42.00 28.00 22.00 24.00 30.00 16.00

N
eu

ra
l n

et
w

or
k 1st overshoot angle. Δψ1 [º] 6.50 7.06 7.13 7.55 6.21 9.56 9.16 5.39

2nd overshoot angle. Δψ2 [º] 8.22 10.23 9.08 9.97 8.10 13.54 12.96 6.54
Initial Turning Time. ta [s] 30.00 38.00 58.00 37.00 37.00 28.00 33.00 33.00
1st Time to check yaw. t1 [s] 16.00 24.00 34.00 23.00 20.00 20.00 24.00 15.00
2nd Time to check yaw. t2 [s] 18.00 28.00 40.00 27.00 22.00 24.00 28.00 16.00

Relative error in [%] 
of a given value:

21 3 15 3 0 20 9 5
11 3 3 8 4 1 10 2
6 0 7 2 3 1 3 3
13 2 1 4 0 9 8 8
12 0 5 5 2 1 7 0

Fig. 14. Approximation quality of the neural network, based on the 
correlation for the 2nd overshoot angle

CONCLUSIONS

 Essence of the presented method consists in its possible 
applications to optimization and multi-criterial automatic 
design of ships. A difficulty in applying traditional
manoeuvrability simulators is their low capability of 
fast and simultaneous analyzing many design solutions 
within a similar time interval. This is the feature which 
must characterize optimization algorithms. Sometimes the 
feature is more desirable than a high accuracy of results 
achieved at the expense of large time consumption. In the 
case of optimization algorithms it is necessary first of all
to distinguish a better solution from worse one.

 The presented method makes it possible to simultaneously 
determine parameters of analyzed manoeuvres depending 
on design parameters of ship. The presented correlation 
diagrams show that the networks correctly recognize trends 
and that the obtained results are not accidental.

 The simulation quality for circulation manoeuvre is a little 
better than that for zig-zag test, though it would be possible 
to improve the simulation quality by supplementing the 
learning set. 

 It should be highlighted that the presented method is not 
aimed at improving ship motion modeling quality but 
only at improving and adjusting the existing algorithms to 
demands of design process.

 The presented neural networks are capable of exact 
interpolating however their capability in extrapolating 
have not been sufficiently recognized so far, hence during
application of the method any results obtained for values 
of the ship parameters being beyond their intervals given 
in Tab. 1, should be considered very cautiously.

 However from another side the traditional manoeuvrability 
simulators make as a rule use of regression relationships to 
determine force coefficients. The method in question makes
it possible to continue research in the presented direction, 
e.g. by taking into account corrections associated with water 
depth, ship trim or application of multi-propeller propulsion 
systems.

 It is also possible to use neural network for dynamic 
simulation of manoeuvre; in this case for a given ship as 
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network inputs would be used its kinematic parameters 
at a given time instant t together with taking into acount 
instantaneous position of rudder and screw propeller setting, 
and network outputs – kinematic parameters after a given 
time interval Δt. 

 Certainly further investigations on the method would be 
carried out in the direction of bettering the learning data 
by supplementing them by results from real sea trials, and 
with a view of presenting example optimization results. 
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