Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Non-equilibrium (coid) pIasmas operated at or close to atmospheric pressure have become very important. Recent progress in the operation of corona discharges and dieIectric-barrier discharges and their appIications is discussed. New Iarge-volume appIications include high-power excimer uItraviolet lamps, excimer based fluorescent Iamps and Iarge-area flat pIasma display panels. Novel processes include the treatment of large gas flows for odour and pollution control and the selective functionalization of flat surfaces, fibres, fabrics and powders. Further innovative applications can be expected from the combination of recentIy developed microcavity pIasma devices, DBD operation and microfabrication technologies suited for mass production. Large arrays of parallei miniature non-equilibrium discharges can be operated simuItaneously. If small apertures are used gas can be fed through these microplasmas, thus creating the unique possibility to combine microreactor technology with non-equilibrium plasma chemistry and possibly also catalysis.
Słowa kluczowe
Rocznik
Tom
Strony
55--64
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Retired from ABB Corporate Research, Baden, Switzerland Obere Parkstr. 8, 5212 Hausen, Switzerland, u.kogelschatz@bluewin.ch
Bibliografia
- [1] Kogelschatz U.: Dielectric-hairier discharges: their history, discharge physics and industrial applications, Plasma Chem. Plasma Process., 23, 2003, 1-46.
- [2] Becker K.H., Kogelschatz U., Schoenbach K.H., Barker R.J., (Eds.): Non-Equilibrium Air Plasmas at Atmospheric Pressure, IOP Publishing Ltd, Bristol, UK, 2004 (now: Taylor & Francis, CRC Press).
- [3] Kogelschatz U.: Electrostatic Precipitation, Ref. [2], 539-553.
- [4] Kim H.H.: Nonthermal plasma processing for air-pollution control: a historical review, Plasma Process. Polym., 1, 2004, 91-110.
- [5] Kogelschatz U.: Ozone Generation, Ref. [2], 551-565.
- [6] Masuda S., Akutsu K., Kuroda M., Awatsu Y., Shibuya Y.: A ceramic-based ozonizer using high-frequency discharge, IEEE Trans. Ind. Appl., 24, 1988, 223-231.
- [7| Okita Y., Iijima T., Amano A., Yamanashi I., Murata T., Development of compact 1 kg/h coplanar discharge ozonizer, IEEJ Trans. Fundam. Mat. 123A, 2003, 548-553 (in Japanese).
- [8] Kogelschatz U., Eliasson B., Egli W.: From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges, Pure Appl. Chem., 71, 1999, 1819-1828.
- [9] Kogelschatz U.: Industrial innovation based on fundamental physics, Plasma Sources Sci. Technol., 11, 2002, 3A, A1-A6.
- [10] Boeuf J.-P.: Plasma display panels: physics, recent developments and key issues, J. Phys. D: Appl. Phys., 36, 2003, R53-R79.
- [11] Ilmer M., Lecheler R., Schweizer H., Seibold M.: Hg-free flat, panel light source PLANON® - a promising candidate for future LCD backlights, SID Int. Symp. Tech. Papers, 2000, 938-941.
- [12] Park H.-B., Lee S.-E., Kim G. Y., Lee Y. D. and Choi K. C.: Effect of dual coplanar electrodes on Mercury-free flat fluorescent lamps for liquid crystal display, J. Display Technol., 2, 2006, 60-67.
- [13] Penache M. C.: Study of high-pressure glow discharges generated by micro-structured electrode (MSE) arrays, PhD Thesis, University of Frankfurt 2002.
- [14] Gericke K.-H., Gessner C., Scheffler P.: Micro-structure electrodes as means of creating uniform discharges at atmospheric pressure, Vacuum, 65, 2002, 291-297.
- [15] Kogelschatz U.: Filamentary, patterned, and diffuse barrier discharges, IEEE Trans. Plasma Sci., 30, 2002, 1400-1408.
- [16] Atmospheric pressure glow discharge plasmas and atmospheric pressure Townsend-like discharge plasmas, Laroussi M.: Homogeneous barrier discharges, Ref. [2], 286-306.
- [17] Discharges generated and maintained in spatially confined geometries: microhollow cathode (MHC) and capillary plasma electrode (CPE) discharges, Ref. [2], 306-328.
- [18] Becker K.H., Schoenbach K.H., Eden J.G.: Microplasmas and applications. J. Phys. D: Appl. Phys., 39, 2006, R55-R70.
- [19] Schoenbach K. H., Verhappen R., Tessnow T., Peterkin F. E. and Byszewski W. W.: Microhollow cathode discharges, Appl. Phys. Lett., 68, 1996, 13-15.
- [20] Schoenbach K.H., Moselhy M., Shi W.: Self-organization in cathode boundary layer microdischarges, Plasma Sources Sci. Technol., 13, 2004, 177-185.
- [21] Kunhardt E.E.: Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas, IEEE Trans. Plasma Sci., 28, 2000, 189-200.
- [22] Kushner M.J.: Modelling of microdischarge devices: plasma and gas dynamics, J. Phys. D: Appl. Phys., 38, 2005, 1633-1643.
- [23] Park S.-J., Kim K.S., Eden J.G: Nanoporous alumina as a dielectric for microcavity plasma devices: multilayer AI/A1203 structures, Appl. Phys. Lett.. 86, 2005, 221501-1 to 221501-3.
- [24] Park S.-J, Eden J. G.: Microdischarge devices with a nanoporous A1203 dielectric: operation in Ne and air, IEEE Trans. Plasma Sci., 33, 2005, 572- 573.
- [25] Koutsospyros A.D., Yin S.-M., Christodoulatos C., Becker K.: Plasmachemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor, IEEE Trans Plasma Sci., 33, 2005, 42-49.
- [26] Frame W., Wheeler D. J., DeTemple T. A., Eden J. G.: Microdischarge devices fabricated in silicon, Appl. Phys. Lett., 71, 1997, 1165-1167.
- [27] Chen J., Park S.-J., Fan Z., Eden J. G., Liu C.: Development and characterization of micromachined hollow cathode plasma display devices, J. Micromech. Syst., 11, 2002, 536-543.
- [28] Tachibana K., Kishimoto Y., Kawai S., Sakaguchi T., Sakai O.: Diagnostics of microdischarge-integrated plasma sources for displays and materials processing, Plasma Phys. Control. Fusion, 47, 2005, A167-A177.
- [29] Sakai O., Kishimoto Y., Tachibana K.: Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure, J. Phys. D: Appl. Phys., 38, 2005, 431-441.
- [30] Kogelschatz U.: Applications of microplasmas and microreactor technology, Invited Lecture, 3rd Intern. Workshop on Microplasmas, Greifswald, Germany, May 9-11, 2006 (to be publ. in Contrib. Plasma Phys. 46, 2007, No. 1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0066-0031