PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser diagnostics of NO molecules and OH radicals in DC positive streamer corona discharges

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The streamer observation and LIF detection of the NO molecules and OH radicals were performed during the steady-state positive DC corona discharge at atmospheric pressure. The time relationship between the regular streamer coronas, laser pulse, LIF signal and laser-induced streamer was explained for no time synchronization LIF measurement. Using the corona radical shower reactor, two-dimensional distributions of ground-state NO (X_2II) could be observed not only in the discharge zone but also both in the downstream and the upstream regions of the reactor. The presence of the ground-state OH (X_2II) and excited-state OH (A_2...) radicals in DC streamer discharge was also investigated. Moreover, the effect of electrohydrodynamic (EHD) flow on NO profiles in the reactor and ozone interference in OH LIF measurement were discussed. The obtained results sllOwed that the density of NO molecules decreased not only in the plasma region formed by the corona streamers and the downstream region of the reactor but also in the upstream region of the reactor. On the other hand, the ground-state OH radicals were generated and stayed mainly in the region where streamers propagated betweell the electrodes.
Rocznik
Tom
Strony
39--54
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Dept. of Electrical and Electronic Engineering, Oita University, 700 Dannoharu, Oita, 870-1192 Japan, skana@cc.oita-u.ac.jp
Bibliografia
  • [1] Veldhuizen van E. M., and Rutgers W. R.: Pulsed positive corona streamer propagation and branching, J. Phys. D: Appl. Phys., 35 (2002), 2169-2179.
  • [2] Ono R., and Oda T.: Formation and structure of primary and secondary streamers in positive pulsed corona discharge - effect of oxygen concentration and applied voltage, J. Phys. D: Appl. Phys., 36 (2003), 1952-1958.
  • [3] Ohkubo T., Kanazawa S., Nomoto Y., Chang J. S., and Adachi T.: NOx removal by corona discharge in a pipe with nozzle electrode system, IEEE Trans. Ind. Appl., 30 (1994), 856-861.
  • [4] Ohkubo T., Kanazawa S., Nomoto Y., Chang J. S., and Adachi T.: Time dependence of NOx removal rate by a corona radical shower system, IEEE Trans. Ind. Appl., 32 (1996), 1068-1062.
  • [5] Ershov A., and Borysow J.: Dynamics of OH (X2Π,v = 0) in high-energy atomospheric pressure electrical pulsed discharge, J. Phys. D: Appl. Phys., 28 (1995), 68-74.
  • [6] Ono R., and Oda T.: Measurement of hydroxyl radicals in pulsed corona discharge, J. Electrostatics, 55 (2002), 333-342.
  • [7] Ono R., and Oda T.: Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge, J. Phys. D: Appl. Phys., 35 (2002), 2133-2138.1
  • [8] Tochikubo F., Uchida S., and Watanabe T.: Study of decay characteristics of OH radical density in pulsed discharge in Ar/H2O, Jpn. J. Appl. Phys.. 43 (2004), 315-320. j
  • [9] Magne L., and Pasquiers S.: LIF spectroscopy applied to the study of nonthermal plasmas for atmospheric pollutant abatement, C.R. Physique, 6 (2005), 908-917. |
  • [10] Kanazawa S., Tanaka H., Kajiwara A., Ohkubo T., Nomoto Y., Kocik M. Mizeraczyk .J., and Chang J. S.: LIF imaging of OH radicals in DC positive streamer coronas, Thin Solid Films, (2006).
  • [11] Coogan J. J., and Sappey A. D.: Distribution of OH within silent discharge plasma reactor, IEEE Trans. Plasma Sci., 24 (1996), 91-92.
  • [12] Sankaranarayanan R., Pashaie B., and Dhali S. K.: Laser-induced fluorescence of OH radicals in a dielectric barrier discharge, Appl. Phys. Lett., 77 (2000), 2970-2972.
  • [13] Roth G. J., and Gundersen M. A.: Laser-induced fluorescence images of NO distribution after needle-plane negative corona discharge, IEEE Trans. Plasma Sci., 27 (1999), 28-29.
  • [14] Fresnet F., Baravian, Pasquiers S., Puech V., Rousseau A., and Rozoy M.: Time-resolved laser-induced fluorescence study of NO removal plasma technology in NO/N2mixtures, J. Phys. D: Appl. Phys., 33 (2000), 1315-1322.
  • [15] Hazama H., Fujiwara M., and Tanimoto M.: Removal processes of nitric oxide along positive streamers observed by laser-induced fluorescence imaging spectroscopy, Chem. Phys. Lett., 323 (2000), 542-548.
  • [16] Tochikubo F., and Watanabe T.: Two-dimensional measurement of emission intensity and NO density in pulsed corona discharge, HAKONE VII, (2000) 219-223.
  • [17] Kanazawa S., Ito T., Shuto Y., Ohkubo T., Nomoto Y., and Mizeraczyk J.: Two-dimensional distribution of ground-state NO density by LIF technique in DC needle-to-plate positive streamer coronas during NO removal processing, IEEE Trans. Ind. Appl., 37 (2001), 1663-1667.
  • [18] Kanazawa S., Sumi T., Shimamoto S., Ohkubo T., Nomoto Y., Kocik M., Mizeraczyk J., and Chang J.S.: Diagnostics of NO oxidation process in a nonthermal plasma reactor: Features of DC streamer-corona discharge and NO LIF profile, IEEE Trans. Plasma Sci., 32 (2004), 25-31.
  • [19] Ono R., Yamashita Y., Takezawa K., and Oda T.: Behaviour of atomic oxygen in a pulsed dielectric barrier discharge measured by laser-induced fluorescence, J. Phys. D: Appl. Pliys., 38 (2005), 2812-2816.
  • [20] Dilecce G., Ambrico P.F., Debenedictis S.: Plasma Source Sci. Technol., 14 (2005), 561.
  • [21] Lukas C., Spaan M., Schulz-von der Gathen V., Thomson M., Wegst R., Dobele H. F., and Neiger M.: Plasma Source Sci. Technol., 10 (2001), 445.
  • [22] Kanazawa S., Ito T., Shuto Y., Ohkubo T., and Nomoto Y.: Characteristics of laser-induced streamer corona discharge in a needle-to-plate electrode system, J. Electrost., 55 (2002) 343-350.
  • [23] Ohkubo T., Ito T., Shuto Y., Akamine S., Kanazawa S., Nomoto Y., and Mizeraczyk J.: Streamer corona discharge induced by laser pulses during LIF measurements in a dc non-thermal plasma reactor for NO oxidation, J. Adv. Oxid. Technol., 5 (2002), 129-134.
  • [24] Ohkubo T., Kanazawa S., Nomoto Y., Kocik M., and Mizeraczyk J.: Characteristics of DC corona streamers induced by UV laser irradiation in nonthermal plasma, J. Adv. Oxid. Technol. 8 (2005), 218-225.
  • [25] Wang W., Wang S., Liu F., Zheng W\, and Wang D.: Spectrochimica Acta Part A, 63 (2006), 477-482.
  • [26] Selzer P. M., and Wang Ch. C., J. Chem. Phys., 71 (1979)3786
  • [27] Dekowski J., Mizeraczyk J., Kocik M., Dors M., Podlinski J., Kanazawa S., Ohkubo T., and Chang J.S.: Electrohydrodynamic flow and its effect on ozone transport in a corona radical shower reactor, IEEE Trans. Plasma Sci., 32 (2004), 370-379.
  • [28] Dekowski J., Kocik M., Mizeraczyk J., Kanazawa S., Ohkubo T.. and Chang J.S.: Flow patterns in a wire (barbed with nozzles)-to-plate electrostatic precipitator model, [in:] Proc. 2003 Annual Meeting of The Institute of Electrostatics Japan, 2003, 189-194.
  • [29] Chang J. S., and Watson A., Electromagnetic Hydrodynamics. IEEE Trans. Elect. Insul, 5 (1994) 871-895.
  • [30] IEEE-DEIS-EHD Technical Committee, Recommended International Standard for Dimensionless Parameters Used In Electrohydrodynamics, IEEE Trans. Elect. Insul., 10 (2003), 3-6.
  • [31] Ono R., and Oda T.: Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy, J. Appl. Phys, 93 (2003), 5876-5882.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0066-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.