Identyfikatory
Warianty tytułu
Problemy nieokreśloności tarcia statycznego i modelowanie zjawiska stick-slip w układach dyskretnych
Języki publikacji
Abstrakty
The paper presents a new method of modeling of the friction action in discrete dynamic systems in cases of undetermined distribution of static friction forces. This method is based on the Gauss Principle and the piecewise linear luz( ... ) and tar( ... ) projections with their original mathematical apparatus. The derived variable-structure model of a two-body system with three frictional contacts describes the stick-slip phenomenon in detail. The model has an analytical form applicable to standard (without iterations) computational procedures.
W artykule przedstawia się nową metodę modelowania procesów stick-slip w dyskretnych układach dynamicznych z tarciami dopuszczającą nieokreśloność rozkładu sił tarcia statycznego. Metoda opiera się na zasadzie Gaussa oraz wykorzystaniu specjalnych przedziałami liniowych odwzorowań luz(...) i tar(...) z ich oryginalnym aparatem matematycznym. W pracy prezentowane jest szczegółowe wyprowadzenie modelu opisującego stick-slip w układzie 2 masowym z 3 miejscami tarcia. Dzięki zastosowaniu odwzorowań luz(...) i tar(...) modele układów z tarciem mają analityczne formy przystosowane do standardowych procedur symulacyjnych.
Czasopismo
Rocznik
Tom
Strony
289--310
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Automative Industry Institute (PIMOT), Warsaw, dariuszzardecki@aster.pl
Bibliografia
- 1. Armstrong-Helouvry B., Dupont P., Canudas de Wit C., 1994, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, 30, 7, 1083-1138
- 2. Balkcom D.J., Trincle J.C., 2002, Computing wrench cones for planar rigid body contact tasks, The International Journal of Robotics Research, 34, 11, 1053-1066
- 3. Baraff D., 1991, Coping with friction for non-penetrating rigid body simulation, Computer Graphics, 25, 4, 31-40
- 4. Baraff D., 1993, Non-penetrating rigid body simulation, Proc. of the EUROGRAPHIC’S ’93, State-of-the-Art Reports
- 5. Baraff D., 1994, Fast contact force computation for non-penetrating rigid bodies, Computer Graphics Proceedings, Annual Conference Series, 23-34
- 6. Brogliato B., Dam A., Paoli L., Genot F., Abadie M., 2002, Numerical simulation of finite dimensional multibody nonsmooth mechanical systems, ASME Applied Mechanical Review, 55, 2, 107-150
- 7. Fan Y., Kalaba R., Natsuyana H., Udwadia F., 2005, Reflections on the Gauss principle of least constraints, Journal of Optimization Theory and Applications, 127, 3, 475-484
- 8. Genot F., Brogliato B., 1999, New results of Painleve paradoxes, European Journal of Mechanics A/Solids, 18, 4, 653-678
- 9. Glocker C., 1997, Formulation of rigid body systems with nonsmooth and multivalued interactions, Nonlinear Analysis. Theory, Methods and Applications, 30, 8, 4887-4892
- 10. Glocker C., 1999, Displacement potentials in non-smooth dynamics, IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics, Kluwer Academic Pub., 323-330
- 11. Glocker C., Pfeiffer F., 1993, Complementarity problems in multibody systems with planar friction, Archive of Applied Mechanics, 63, 452-463
- 12. Grzesikiewicz W., Wakulicz A., 1979, Numerical methods for computing dry friction forces in draft gear of train, Prace Naukowe Politechniki Warszawskiej. Mechanika, 63 [in Polish]
- 13. Grzesikiewicz W., 1990, Dynamics of mechanical systems with constraints, Prace Naukowe Politechniki Warszawskiej. Mechanika, 117 [in Polish]
- 14. Joskowicz L., Kumar V., Sacks E., 1998, Selecting an effective task-specific contact analysis algorithm, IEEE Workshop on New Directions in Contact Analysis and Simulation, IEEE Press
- 15. Karnopp D., 1985, Computer simulation of stick-slip friction on mechanical dynamic systems, Transactions of the ASME. Journal of Dynamic Systems, Measurement, and Control, 107, 100-103
- 16. Kaufman D., Edmunds T., Pai D.K., 2005, Fast frictional dynamics for rigid bodies, ACM Transactions on Graphics (TOG), 24, 3, 946-956
- 17. Leine R.I, Brogliato B., Nijmeier H., 2002, Periodic motion and bifurcations induced by the Painleve pradox, European Journal of Mechanics A/Solids, 21, 869-896
- 18. Lotstedt P., 1982, Coulomb friction in two-dimensional rigid body systems, ZAMM, 42, 2, 281-296
- 19. Mason M.T., Wang Y., 1988, On the inconsistency of rigid-body frictional planar mechanics, Proc. of the Conference on Robotics and Automation – ICRA’1988, IEEE Pub., 524-528
- 20. Mirtich B., 1998, Rigid body contact: collision detection to force computation, Proc. of the Conference on Robotics and Automation – ICRA’1998, IEEE Pub.
- 21. Moreau J.J., 2003, Modelisation et simulation de matriaux granulaires, Congres National d’Analyse Num´erique, The paper available by internet – www.math.univ-montp2.fr/canum03/lundi.htm
- 22. Pang J.S., Trincle J.C., 2000, Stability characterizations of rigid-body contact problems with Coulomb friction, ZAMM, 80, 10, 643-663
- 23. Redon S., Kheddar A., Coquillart S., 2002, Gauss least constraints principle and rigid body simulations, Proc. of the Conference on Robotics and Automation – ICRA’2002, IEEE Pub., 517-522
- 24. Shwager T., Poschel T., 2002, Rigid body dynamics of railway ballast, System Dynamics of Long-Term Behaviour of Railway Vehicles, Truck and Subgrade, Lecture Notes in Applied Mechanics, Springer, Berlin
- 25. Stewart D.E., Trincle J.C., 1996, Dynamics, friction, and complementarity problems, Proc. of the Conference on Complementarity Problems, SIAM Pub., 425-439
- 26. Trincle J.C., Pang J.S., Sudarsky S., Lo G., 1997, On dynamic multirigid-body contact problems with Coulomb friction, ZAMM, 77, 4, 267-279
- 27. Unger T., Wolf D.E., Kertesz J., 2005, Force indeterminacy in the jammed state of hard disks, Physical Review Letters, 94, 178001
- 28. Żardecki D., 2001, The luz (. . .) and tar (. . .) projections – a theoretical back-ground and an idea of application in a modeling of discrete mechanical systems with backlashes or frictions, Biuletyn WAT, L, 5, 125-160 [in Polish]
- 29. Żardecki D., 2005, Piecewise-linear modeling of Dynamic systems with freeplay and friction, Proc. of the 8th DSTA Conference, TU of Łź Pub., 321-332
- 30. Żardecki D., 2006a, Piecewise linear luz (. . .) and tar (. . .) projections. Part 1 – Theoretical background, Journal of Theoretical and Applied Mechanics, 44, 1, 163-184
- 31. Żardecki D., 2006b, Piecewise linear luz (. . .) and tar (. . .) projections. Part 2 – Application in modeling of dynamic systems with freeplay and friction, Journal of Theoretical and Applied Mechanics, 44, 1, 185-202
- 32. Żardecki D., 2006c, Piecewise linear modeling of friction and stick-slip phenomenon in discrete dynamic systems, Journal of Theoretical and Applied Mechanics, 44, 2, 255-277
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0066-0006