PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of strain localization in quasi-brittle materials with a coupled elasto-plastic-damage model

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie lokalizacji odkształceń w materiałach quasi-kruchych z zastosowaniem modelu sprężysto-plastycznego
Języki publikacji
EN
Abstrakty
EN
The paper presents results of numerical simulations of strain localization in quasi-brittle materials (like concrete) under plane strain conditions. To model the material behaviour, an isotropic elasto-plastic-damage model combining elasto-plasticity and scalar damage was used. An elasto-plastic constitutive law using a Drucker-Prager yield surface (in compression) and Rankine yield surface (in tension) was defined. A modified failure criterion by Rankine for the equivalent strain using an exponential evolution law was assumed within damage mechanics. To obtain mesh-independent results of strain localization, the model was enhanced by non-local terms in the softening regime. A four-point bending test of a concrete beam with a single notch was numerically simulated using the finite element method. FE-results were compared with laboratory experiments.
PL
W artykule przedstawiono wyniki symulacji numerycznych lokalizacji odkształceń w materiałach quasi-kruchych (jak beton) w płaskim stanie odkształcenia. Do opisu materiału przyjęto izotropowy model sprężysto-plastyczno-zniszczeniowy uwzględniający prawo sprężysto-plastyczne ze skalarną degradacją sztywności. W przypadku prawa sprężysto-plastycznego przyjęto kryterium plastyczności Druckera-Pragera w ściskaniu i kryterium plastyczności Rankine'a w rozciąganiu. Degradację sprężystą opisano z wykorzystaniem definicji odkształcenia zastępczego wegług warunku Rankine'a i wykładniczym prawem ewolucji. W celu otrzymania wyników niezależnych od siatki elementów skończonych, w obszarze osłabienia przyjęto teorię nielokalną. Przedstawiono wyniki symulacji numerycznych dla belki betonowej z nacięciem obciążonej dwoma siłami skupionymi. Wyniki numeryczne porównane z wynikami doświadczalnymi.
Rocznik
Strony
767--782
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
autor
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, bobin@pg.gda.pl
Bibliografia
  • 1. Abaqus Theory Manual, Version 5.8, 1998, Hibbit, Karlsson & Sorensen Inc.
  • 2. Akkermann J., 2000, Rotationsverhalten von Stahlbeton-Rahmenecken, Dissertation, Universitat Fridericiana zu Karlsruhe, Karlsruhe
  • 3. Bazant Z.P., 1984, Size effect in blunt fracture: concrete, rock, metal, J. Eng. Mech. ASCE, 110, 518-535
  • 4. Bazant Z.P., 2003, Scaling of Structural Strength, Hermes-Penton, London
  • 5. Bazant Z.P., Bhat P.D., 1976, Endochronic theory of inelasticity and failure of concrete, J. Eng. Mech. Div. ASCE, 102, 701-722
  • 6. Bazant Z.P., Cedolin L., 1979, Blunt crackband propagation in finite element analysis, J. Eng. Mech. Div. ASCE, 105, 2, 297-315
  • 7. Bazant Z.P., Ozbolt J., 1990, Non-local microplane model for fracture, damage and size effect in structures, J. Eng. Mech. ASCE, 116, 2485-2505
  • 8. Bazant Z.P., Shieh C.L., 1978, Endochronic model for nonlinear triaxial behaviour of concrete, Nucl. Engng. Des., 47, 305-315
  • 9. Bhandari A.R., Inoue J., 2005, Experimental study of strain rates effects on strain localization characteristics of soft rocks, Soils and Foundations, 45, 1, 125-140
  • 10. Bobinski J., Tejchman J., 2004, Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity, Computers and Concrete, 4, 433-455
  • 11. Bobinski J., Tejchman J., 2005,Modelling of concrete behaviour with a non-local continuum damage approach, Archives of Hydro-Engineering and Environmental Mechanics, 52, 1, 85-102
  • 12. Bobinski J., Tejchman J., 2006, Modelling of size effects in concrete using elasto-plasticity with non-local softening, Archives of Civil Engineering, LII, 1, 7-35
  • 13. de Borst R., Muhlhaus H.-B, Pamin J., Sluys L., 1992, Computational modelling of localization of deformation, In: Proc. of the 3rd Int. Conf. Comp. Plasticity, D.R.J. Owen, H. Onate, E. Hinton (edit.), Swansea, Pineridge Press, 483-508
  • 14. de Borst R., Pamin J., Geers M., 1999, On coupled gradient-dependent plasticity and damage theories with a view to localization analysis, Eur. J. Mech. A/Solids, 18, 6, 939-962
  • 15. Brinkgreve R.B.J., 1964, Geomaterical models and numerical analysis of softening, PhD Thesis, Delft University of Technology
  • 16. Chen E., 1999, Non-local effects on dynamic damage accumulation in brittle solids, I. J. Num. Anal. Meth. Geomech., 23, 1-21
  • 17. Chen J., Yuan H., Kalkhof D., 2001, A nonlocal damage model for elastoplastic materials based on gradient plasticity theory, Report Nr.01-13, Paul Scherrer Institut, 1-130
  • 18. D’Addetta G.A., Kun F., Ramm E., 2002, In the application of a discrete model to the fracture process of cohesive granular materials, Granular Matter, 4, 77-90
  • 19. Donze F.V., Magnier S.A., Daudeville L., Mariotti C., Davenne L., 1999, Numerical study of compressive behaviour of concrete at high strain rates, J. Eng. Mechanics, 1154-1163
  • 20. Dragon A., Mroz Z., 1979, A continuum model for plastic-brittle behaviour of rock and concrete, Int. J. Eng. Science, 17
  • 21. Groen A. E., 1997, Three-dimensional elasto-plastic analysis of soils, PhD Thesis, Delft University, 1-114
  • 22. Herrmann H.J., Hansen A., Roux S., 1989, Fracture of disordered elastic lattices in two dimensions, Physical Rev. B, 39, 637-647
  • 23. Hilleborg A., 1985, The theoretical basis of a method to determine the fracture energy of concrete, Materials and Structures, 18, 291-296
  • 24. Hordijk D.A., 1991, Local approach to fatigue of concrete, PhD dissertation, Delft University of Technology
  • 25. Ibrahimbegovic A., Markovic D., Gatuing F., 2003, Constitutive model of coupled damage-plasticity and its finite element implementation, Eur. J. Finite Elem., 12, 4, 381-405
  • 26. Jirasek M., 1999, Comments on microplane theory, In: Mechanics of Quasi-Brittle Materials and Structures, G. Pijaudier-Cabot, Z. Bittnar and B. Gerard (edit.), Hermes Science Publications, 55-77
  • 27. Jirasek M., 2004, Non-local damage mechanics with application to concrete, Revue Francaise de Genie Civil., 8, 683-707
  • 28. Kozicki J., Tejchman J., 2006a, 2D lattice model for fracture in brittle materials, Archives of Hydro-Engineering and Environmental Mechanics, in press
  • 29. Kozicki J., Tejchman J., 2006b, Measurements of the displacement field in concrete notched beams using a digital image correlation (DIC) technique, Lecture, Int. Conf. EURO-C, Mayrhofen
  • 30. Lemaitre J., 1985, Coupled elasto-plasticity and damage constitutive equations, Computer Methods Appl. Mech. Eng., 51, 31-49
  • 31. Menetrey P., Willam K.J., 1995, Triaxial failure criterion for concrete and its generalization, ACI Structural Journal, 311-318
  • 32. Palaniswamy R., Shah S.P., 1974, Fracture and stress-strain relationship of concrete under triaxial compression, J. Struct. Div. ASCE, 100, 901-916
  • 33. Pamin J., 2004, Gradient-Enchanced Continuum Models: Formulation, Discretization and Applications, HabilitationMonography, Cracow University of Technology, Cracow
  • 34. Pamin J., de Borst R., 1998, Simulation of crack spacing using a reinforced concrete model with an internal length parameter, Arch. Appl. Mech., 68, 9, 613-625
  • 35. Pamin J., de Borst R., 1999, Stiffness degradation in gradient-dependent coupled damage-plasticity, Arch. Mech., 51, 3/4, 419-446
  • 36. Peerlings R.H.J., de Borst R., Brekelmans W.A.M., Geers M.G.D., 1998, Gradient enhanced damage modelling of concrete fracture, Mech. Cohesion.-Friction. Materials, 3, 323-342
  • 37. Pietruszczak D., Jiang J., Mirza F.A., 1988, An elastoplastic constitutive model for concrete, Int. J. Solids Structures, 24, 7, 705-722
  • 38. Pijaudier-Cabot G., Bazant Z.P., 1987, Nonlocal damage theory, ASCE J. Eng. Mech., 113, 1512-1533
  • 39. Sakaguchi H., Muhlhaus H.B., 1997, Mesh free modelling of failure and localisation in brittle materials, In: Deformation and Progressive Failure in Geomechanics, A. Asaoka, T. Adachi and F. Oka (edit.), 15-21
  • 40. Salari M.R., Saeb S., Willam K., Patchet S.J., Carrasco R.C., 2004, A coupled elastoplastic damage model for geomaterials, Computers Methods in Applied Mechanics and Engineering, 193, 2625-2643
  • 41. Schlangen E., Garboczi E.J., 1997, Fracture simulations of concrete using lattice models: computational aspects, Engineering Fracture Mechanics, 57, 319-332
  • 42. Simone A., Wells G.N., Sluys L.J., 2002, Discontinuous modelling of crack propagation in a gradient enhanced continuum, Proc. of the Fifth World Congress on Computational Mechanics, WCCM V, Vienna, Austria
  • 43. Sluys L., 1992, Wave propagation, localisation and dispersion in softening solids, PhD Thesis, Delft University of Technology
  • 44. Sluys L.J., de Borst R., 1994, Dispersive properties of gradient and ratedependent media, Mech. Mater., 183, 131-149
  • 45. Tejchman J., 2006, Effect of fluctuation of current void ratio on the shear zone formation in granular bodies within micro-polar hypoplasticity, Computers and Geotechnics, 33, 1, 1-68
  • 46. Vervuurt A., van Mier J.G.M., Schlangen E., 1994, Lattice model for analyzing steel-concrete interactions, In: Comp. Methods and Advances in Geomechanics, Siriwardane and Zaman (edit.), 713-718, Balkema, Rotterdam
  • 47. van Vliet M.R.A., van Mier J.G.M., 1996, Experimental investigation of concrete fracture under uniaxial compression, Mechanics of Cohesive-Frictional Materials, 1, 115-127
  • 48. Walukiewicz H., Bielewicz E., Gorski J., 1997, Simulation of nonhomogeneous random fields for structural applications, Computers and Structures, 64, 1/4, 491-498
  • 49. Willam K.J., Warnke E.P., 1975, Constitutive model for the triaxial behaviour of concrete, IABSE Seminar on Concrete Structures Subjected to Triaxial Stress, Bergamo, Italy, 1-31
  • 50. Wittmann F.H., Mihashi H., Nomura N., 1992, Size effect on fracture energy using three-point bend tests, Materials and Structures, 25, 327-334
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0056-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.