PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stochastic model of cavitation erosion of low-plasticity metallic materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stochastic model of cavitation erosion of low plasticity solids was presented. It is a kinetic type model based on the energy conservation law. Mathematical formulation comprised equations for the energy accumulation and release rates. Micro-cracks were assumed to be the main negative source of energy. In calculations carried out, the random element was omitted and deterministic dependences of energy absorbed and relaxed in the process were found. Conformability of the theoretical and experimental curves was taken in favour of the model. The material fatique effect was expressed by the delay of micro-cracks appearance with respect to the force action time. The model sets a calculation direction of the temporal development of cavitation erosion. An application to practical cases requires the use of proper loading functions, as well as probabilistic distributions of the absorption and relaxation of energy, being the function of material parameters of the destroyed solid.
Rocznik
Tom
Strony
101--126
Opis fizyczny
Bibliogr. 95 poz., rys., tab.
Twórcy
autor
  • The Szewalski Institute of Fluid Flow Machinery, Centre for Mechanics of Liquids, ul. Fiszera 14, 80-952 Gdańsk, Poland, giren@imp.gda.pl
Bibliografia
  • [1] Wheeler W.H.: Indentation of metals by cavitation, Trans, of the ASME, D-82 (1960), 1, 184-194.
  • [2] Shalnev K.K.: S.P.Kozyrev, Relaxation hypotesis of cavitation erosion, Doklady Akademii Nauk SSSR, Vol. 202 (1972), 5, 1057-1060.
  • [3] Kalestrup K.J.: I.Hansson, K.A.Morch, A simple model for cavitation erosion of metals, J. of Physics D: Appl. Physics Vol. 11 (1978), 6, 899-912.
  • [4] Noskievic J.: Dynamics of the cavitation damage, Joint Symp. on Design and Operation of Fluid Machinery, ASCE/IAHR/ASME, Colorado State University 1978, 453-462.
  • [5] Veerabhadra R.P.,Buckley D.H.: Predictive capability of long-term cavitation and liquid impingement erosion models, Wear Vol. 94 (1984), 3, 259-274.
  • [6] Sitnik L.: Mathematical description of the cavitation erosion process and its utilization for increasing the materials resistance to cavitation, [in:] Cavitation in Hydraulic Structures and Turbomachinery, Joint ASCE/ASME Mechanics Conf., Albuquerque, New Mexico 1985, 21-30.
  • [7] Karimi A.,Leo W.R.: Phenomenological model for cavitation erosion rate computation, Materials Sci. and Engng., Vol. 95 (1987), 1-14.
  • [8] Pereira F., F.Avellan, Dupont Ph.: Prediction of cavitation erosion - an energy approach, J. of Fluid Engng., Trans, of ASME, Vol. 120 (1998), 4, 719-727.
  • [9] Berchiche N., Franc J-P., Michel J-M.-: A model for the prediction of the erosion of ductile materials by cavitation, Comptes Rendus del Acad. des Sci., Ser.II, Fasc. B, Vol. 328 (2000), 4, 305-310.
  • [10] Veerabhadra R.P., Buckley D.H., Matsumura M.: A unified relation for cavitation erosion, Int. J. of Mech. Sci., Vol. 26 (1984), 5, 325-335.
  • [11] Karimi A., Avellan F.: Comparison of erosion mechanisms in different types of cavitation, Wear, Vol. 113 (1986), 3, 305-322.
  • [12] Belahadji B., Franc J-P., Michel J-M.: A statistical analysis of cavitation erosion pits, Trans, of the ASME: J. of Fluids Engng., Vol. 113 (1991), 700- 705.
  • [13] Luis H., Tai P.T., Whlage T., Yabuki A.: Evaluation and prediction of surface roughness due to cavitation erosion, Int. Symp. on Propulsors and Cavitation, Hamburg, June 22-25, 1992, paper 2434.
  • [14] Fortes-Patella R., Avelllavigne J.L.: The new approach to evaluate the cavitation erosion power, J. of Fluid Engng. - Trans, of ASME, Vol. 120 (1998), 2, 335-344.
  • [15] Kass M.et al., Nonlinear cavitation erosion of stainless ahmedsteel in mercury versus applied power, Tribology Letters Vol. 5, (1998), 2-3, 231-234.
  • [16] Robinson P.B., Blake J.R., Kodama I., Shima A., Tomita Y.: Interaction of cavitation bubbles with a free surface, J. of Appl. Physics, Vol. 89, (2001), 8225-8237.
  • [17] American Society for Testing and Materials (1967), Erosion by cavitation or impingement, ASTM STP 408.
  • [18] Chahine G.L., Duraiswami R.: Dynamical interactions in a multibuble cloud, ASTM J. of Fluid Engng., Vol. 114 (1992), 680-686.
  • [19] Hickling R., Plesset M.S.: Collaps and rebound of a spherical bubble in water, Physics Fluids, Vol. 7 (1964), 7-14.
  • [20] Plesset M.S., Prosperetti A.: Bubble dynamics and cavitation, Ann. Rev. Fluid Mech. 9, 1977, 145-185.
  • [21] Young F.R.: Cavitation, McGraw-Hill, 1989.
  • [22] Burka E.S.: Cavitation in hydraulic machinery, Trans, of the Inst, of Fluid- Flow Machinery, No. 110 (2002), 7-13.
  • [23] Harrison M.: Experimental study of single bubble cavitation noise, J. of Acoustics Soc. of America, Vol. 24 (1952), 776.
  • [24] Chahine G.L.: Interaction between an oscillating bubble and a free surface, ASTM J. of Fluid Engng., Vol. 99 (1977), 709-716.
  • [25] Vogel A., Lauterborn W., Timm R.: Optical and acoustic investigations of the dynamics of laser produced cavitation bubbles near a solid boundary, J. of Fluid Mech., Vol. 206 (1989), 299-338.
  • [26] Avellan F., Farha R.T.: Shock pressure generated by cavitation vortex collapse, Int. Symp. on Cavitation Noise and Erosion in Fluid Systems, San Francisco 1989, ASME, Vol.FED 88, 119-125.
  • [27] Benjamin T.B., Ellis A.T.: The collapse of cavitation bubbles on the pressures thereby produced against solid boundaries, Phil. Trans, of the Royal Society, London, Ser.A, Vol. 260 (1966), 221-240.
  • [28] Steller J., Krella A., Koronowicz J., Janicki W.: Towards quantitative assessment of materials resistance to cavitation erosion, II Int. Conf. on Erosive and Abrasive Wear, Cambridge, 22-25 September 2003.
  • [29] Chan W.K.: Correlation between cavitation type and cavitation erosion in centrifugal pumps, Int. J. of Heat and Fluid Flow, Vol. 11 (1990), 3, 269-271.
  • [30] Ceccio S.L., Brennen C.E.: Observations of the dynamics and acoustics of traveling bubble cavitation, J. of Fluids Mechanics, Vol. 233 (1991), 633-660.
  • [31] Tomita Y.. Shima A.: On the behavior of the spherical bubble and the impulse pressure in a viscous compressible liquid, Bull, of the Japan Soc. of Mech. Engng., Vol. 20 (1977), 1453-1460.
  • [32] Cavitation in control valves - Technical Information, Samson AG 3/11 (2003), 1-64.
  • [33] Morozov V.P.: Cavitation noise as a train of sound pulses generated at random times, Sov. Phys. Acoust. Col., 14 (1969), 361-365.
  • [34] Steller J.: International Cavitation Erosion Test. Test facilities and experimental results, 2eme Journees "Cavitation", Soc. Hydrotechnique de France, Paris 1992.
  • [35] Standard method for erosion of solid materials by a cavitating liquid jet, ASTM Standard G32-85, 1985.
  • [36] Standard method of vibratory cavitation erosion test, ASTM Standard G32- 85, 1985.
  • [37] Stinebring D.R., Arndt R.E.A., Holl J.W.: Scalling of cavitation damage, J. of Hydronautics, Vol. 11, 3 (1977), 67-73.
  • [38] Lecoffre Y., Marcoz J., Franc J.P., Michel J.M.: Tentative procedure for scaling cavitation damage, Cavitation in Hydraulic Structures and Turbomachinery, ASME, FED Vol. 25, 1985, Albuquerque, 1-11.
  • [39] ShalnevK.K., Kozyrev S.P.: Relaxation hypotesis of cavitation erosion, Doklady Akad. Nauk SSSR, Vol. 202 (1972), 5, 1057-1060.
  • [40] Karimi A., Martin J.L.: Cavitation erosion of materials, Inter. Metals Rev., Vol. 31 (1986), 1, 1-26.
  • [41] Richman R.H., McNaughton W.P.: Correlation of cavitation erosion behaviour with mechanical properties of metals, Wear, Vol. 140 1990), 1, 63-82.
  • [42] Richman R.H., Rao A.S., Hodgson D.E.: Cavitation erosion of two NiTi alloys, Wear, Vol. 157 (1992), 2, 401-407.
  • [43] Bologa O.: The parameter influence on the superficial layer in cavitation destruction, Ann. of Univ. of Galati, Vol. VIII (2002), Tribology, pp. 38-50.
  • [44] Terauchi Y., Matuura H., Kitamura M.: Correlation of cavitation damage tests with residual stress measurements, Bull, of the JSME, Vol. 16 (1973), 102, 1829-1840.
  • [45] Krause H., Mathias M.: Applicability of X-ray residual stress analysis for early recognition of cavitation damage, Materialpruefung, Vol. 28 (1986), 6, 167-173.
  • [46] Wade E.H.R., Preece C.M.: Cavitation erosion of iron and steel, Metall. Trans. A: Physical Metallurgy & Mater. Sci., Vol. 9A (1978), 9, 1299-1310.
  • [47] Heatcock C.J., Ball A., Protheroe B.E.: Cavitation erosion of Co based stellite alloys, cemented carbides and surface treated low alloy steels, Wear, Vol. 74 (1981), 1, 11-26.
  • [48] Feller H.G., Kharrazi Y.: Cavitation erosion of metals and alloys, Wear, Vol. 93 (1984), 3, 249-260.
  • [49] Heathcock C.J., Protheroe B.E., Ball A.: Cavitation erosion of stainless steels, Wear, Vol. 81 (1982), 311-327.
  • [50] Vyas B., Preece C.M.: Cavitation erosion of FCC metals, Metall. Trans. A - Physical Metall. & Mater. Sci., Vol. 8A (1977), 6, 915-923.
  • [51] Anthony C.K.: Wear resistant cobalt-base alloys, J. of Metals, February 1983, 52-60.
  • [52] Richman R.H.: Deformation induced martensite and resistance to cavitation erosion, J. de Physique IV, Vol.5, (1995), No. C8, 1193-1198.
  • [53] Richman R.H., McNaughton W.P.: A metallurgical approach to improved cavitation-erosion resistance, ASM Int. J. of Mater. Engng. and Performance, Vol. 6 (1997), No. 5, 633-641.
  • [54] Li D.Y., Liu R.: The mechanism responsible for high wear resistance of pseudo-elastic TiNi alloy - a novel tribo-material, Wear, Vol. 225-229 (1999), 777-783.
  • [55] Endo K., Nishimura Y.: Fundamental studies of cavitation erosion, Bull, of the JSME, Vol. 16 (1973), 91, 22-30.
  • [56] Mizutani Y., Ishigur T.O, Nakajima K.: The surface damage due to cavitation erosion in metals, J. of the Japan Inst, of Metals, Vol. 35 (1971), 4, 319-323.
  • [57] Karimi A.: Cavitation erosion of a duplex stainless steel, Mater. Sci. & Engng., Vol. 86 (1987), 191-203.
  • [58] Kim J.K., Ahn S.Y., Kim Y.D., Oh Y.K., Kim S.J.: Cavitation behavior of Fe and Ni base hardfacing alloys for replacing Co-base stellite, J. of the Korean Inst, of Metals and Mater., Vol. 36 (1998), 9, 1391-1395.
  • [59] DiVernieri-Cuppari M.G., Wischnowski F., Tanaka D.K., Sinatora A.: Correlation between microstructure and cavitation erosion resistance of high chromium cast steels, Wear, Vol. 225-229, pt.l (1999), 517-522.
  • [60] Ritchie R.O.: Mechanisms of fatigue-crack propagation in ductile and brittle solids. Inter. J. of Fracture, Vol.100 (1999), 55-83.
  • [61] Sornette D., Vanneste C., Knopoff L.: Statistical model of earthquake fore- shocks. Physical Rev. E, Vol. 45 (1992), 8351-7.
  • [62] Sornette D., Vanneste C.: Dynamics and memory effects in rupture of thermal fuse networks, Phys. Rev. Letters, Vol. 68 (1992), 612-15.
  • [63] Griffith A.A.: The phenomena of rapture and flow in solids, Phil. Trans. Roy. Soc. A, Vol. 221 (1921), 163-198.
  • [64] Irwin G.R., Kies J.A.: Critical energy rate analysis of fracture strength, Welding Research Suppl., (1954), 193-198.
  • [65] Sobczyk K.: Stochastic Models for fatigue damage of materials, Adv. in Appl. Probability, Vol.19 (1987), 652-673.
  • [66] Sobczyk K., Spencer B.F.: Random microstructural effects on fatigue accumulation, Inter. J. of Fatigue, Vol. 17 (1995), 521-30.
  • [67] Bazant Z.P., Jirasek M.: Nonlocal integral formulation of plasticity and damage, J. of Engng. Mechanics, November 2002, 1119-1148.
  • [68] Jaeger Z., Englman R.: Thermodynamical theory for fracture in heterogeneous solids, [in:] Damage Mechanics in Engineering Materials, NY 1989.
  • [69] Ostoja-Starzewski M.: Damage in random micro structure: size effecs, fractals and entropy maximization, [in:] Mechanics Pan-America 1989, ed. C.R.Steele, ASME NY 1989.
  • [70] Naimark O.B., Silbershmidt V.V.: On the fracture of solids with microcracks, Europ. J. of Mechanics A: Solids, Vol. 10 (1991), 1-13.
  • [71] Regel V.R., Slutsker A.I., Tomashevskiy I.Y.: Kinetic Nature of Strength of Solids, Nauka, Moskva 1974.
  • [72] Mescheryakov Yu.I., Divakov A.K., Zhigacheva N.I.: Role of mezostructure effects in dynamic plasticity and strength of ductile steels, Mater. Physics and Mech., Vol. 3 (2001), 63-100.
  • [73] Zavattieri P.D., Espinosa H.D.: Grain level analysis of crack initiation and propagation in brittle materials, Acta Mater., Vol. 49 (2001), 4291-4311.
  • [74] Fedelich B.: A stochastic theory for the problem of multiple surface crack coalescence, Inter. J. of Fracture, Vol. 91 (1998), 23-45.
  • [75] Bhattacharya B.: Asymptotic independence of material failure at different scales - the role of small-scale fluctuations 15th ASCE Engng. Mech. Conf., New York, June 2002.
  • [76] Tuncay K., Park A., Ortoleva P.: A forward model of three-dimensional fracture orientation and characteristics, J. of Geophysical Research, Vol.105 (2000), No.B7, 16719-35.
  • [77] Tsokos C.P., Padgett W.J.: Random integral equations with applications to life sciences and engineering, Mathem. in Sci. &; Engng., Vol.108, Acad.Press, N.Y. - London 1974.
  • [78] Meged Y.: Modelling of vibratory cavitation erosion test results by a weibull distribution, J. of Testing and Evaluation, Vol. 31 (2003), 1-12.
  • [79] Berton R.P.: Statistical distributions of water content and sizes for clouds, Ann. Geophysicae, Vol. 18 (2000), 385-397.
  • [80] J. Steller: Report "International Cavitation Erosion Test, Preliminary Report Part II" IMP PAN 20/98.
  • [81] Espinosa H.D., Lee S.: Advances in micro scale modeling of failure mechanisms in ceramics and fiber composities, The First Sino-US Joint Symp. on Multiscale Analysis in Mater. Sci. &; Engng., Beijing, China, June 2002.
  • [82] Simons J.W., Antoun T.H., Curray D.R.: A finite element model for analyzing the dynamic cracking response of concrete, VIII Int. Symp.on Interactions of the Effects of Munitions with Structures, McClean, April 1997.
  • [83] Bhattacharya B., Ellingwood B.: Continuum damage mechanics-based model of stochastic damage growth, J. of Engng. Mechanics, ASCE, Vol. 124 (1998), 1000-1009.
  • [84] Carpinteri A., Chiaia B., Cornetti P.: A disordered micro structure material model based on fractal geometry and fractional calculus, J. of Appl. Mathematics and Mech., Vol. 84 (2004), 128-135.
  • [85] Chelidze T., Gueguen Y.: Evidence of fractal fracture, Int. J. of Rock Mech. & Mineral Sci., Vol. 27 (1990), 223-225.
  • [86] Williford R.E.: Scalling similarities between fracture surfaces, energies and structure parameters, Scripta Metall., Vol.22 (1988), 197-200.
  • [87] Mishnaevski L.L.: A new approach to the determination of the crack velocity vs. crack length relation, Int. J. for Fatigue & Fracture of Engng Mater, and Structures, No. 10 (1994), 1205-1212.
  • [88] Lung C.W.: Fractals and fracture of metals with cracks, [in:] Fractals ix Physics, ed. E. Pietronero, E.Tosatti, North-Holland, NY 1986.
  • [89] Gutenberg B., Richter F.C.: Seismicity of the Earth and Associated Phenomena, Princeton Univ., Princeton 1954.
  • [90] Borodich F.M.: Fractals and fractal scaling in fracture mechanics, Inter. J of Fracture, Vol. 95 (1999), 239-259.
  • [91] Robsman V.E., Ershova N.V.: Vibration inspection method to detect flaw, and evaluate bearing strength of construction, XIII Sess. of the Russian Acoustical Soc., Moskva 2003, 332-336.
  • [92] Kimia B.B., Tannenbaum A.R., Zucker S.W.: Shape, shocks & deformations Inter. J. of Computer Vision, Vol. 15 (1995), 189-224.
  • [93] Chelidze T., Gueguen Y.: Pressure-induced percolation transitions in com posites, J. of Physics D-Applied Physics, Vol. 31 (1998), 2877-85.
  • [94] Ciliberto S., Guarino A., Scorretti R.: The effect of disorder on the fracture nucleation process, Physica D, Vol. 158 (2001), 83-104.
  • [95] Levy A.V.: Erosion and erosion-corrosion of metals, Corrosion, Vol. 51 (1995), 872-83.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0056-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.