PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of fracture parameters for crack problems in fgm by a meshless method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznaczanie parametrów pękania dla szczelin w materiałach funkcjonalnie gradientowych metodą bezsiatkową
Języki publikacji
EN
Abstrakty
EN
A meshless method based on the local Petrov-Galerkin approach is proposed for crack analysis in two-dimensional (2D), anisotropic and linear elastic solids with continuously varying material properties. Both quasi-static thermal and transient elastodynamic problems are considered. For time-dependent problems, the Laplace transform technique is utilized. The analyzed domain is divided into small subdomains of circular shapes. A unit step function is used as the test function in the local weak form. It leads to Local Integral Equations (LIE) involving a domain-integral only in the case of transient dynamic problems. The Moving Least Squares (MLS) method is adopted for approximating the physical quantities in the LIE. Efficient numerical methods are presented to compute the fracture parameters, namely, the stress intensity factors and the T-stress, for a crack in Functionally Graded Materials (FGM). The path-independent integral representations for stress intensity factors and T-stresses in continuously non-homogeneous FGM are presented.
PL
Przedstawiono bezsiatkową metodę analizy szczelin opartą na podejściu Petrova-Galerkina dla dwuwymiarowych liniowo-sprężystych i anizotropowych ośrodków o zmieniających się własnościach materiałowych. Rozważono zarówno kwazistatyczne problemy naprężeń cieplnych, jak i zagadnienia elastodynamiki, w których zastosowano aparat transformacji Laplace'a. Badany obszar podzielono na małe podobszary kołowe. Jako funkcję testową w lokalnej, słabej postaci zastosowano jednostkową funkcję schodkową, co prowadzi do lokalnych równań całkowych (LIE). Metodę ruchomych najmniejszych kwadratów (MLS) zastosowano do przybliżenia wielkości fizycznych w LIE. Przedstawiono efektywne metody numeryczne wyznaczania parametrów pękania, a w szczególności współczynników koncentracji naprężeń oraz naprężeń T dla szczelin w materiałach funkcjonalnie gradientowych (FGM). Przedstawiono niezależne od drogi całkowania reprezentacje tych parametrów w materiałach FGM o kontynualnie zmieniającej się niejednorodności.
Rocznik
Strony
603--636
Opis fizyczny
Bibliogr. 63 poz., rys.
Twórcy
autor
autor
autor
autor
  • Institute of Construction and Architecture, Slovak Academy of Sciences, Bratislava, Slovakia, usarslad@savba.sk
Bibliografia
  • 1. Albuquerque E.L., Sollero P., Aliabadi M.H., 2002, The boundary element method applied to time dependent problems in anisotropic materials, Int. Journal Solids and Structures, 39, 1405-1422
  • 2. Albuquerque E.L., Sollero P., Aliabadi M.H., 2004, Dual boundary element method for anisotropic dynamic fracture mechanics, Int. J. Num. Meth. Eng., 59 1187-1205
  • 3. Aliabadi M.H., 1997, Boundary element formulations in fracture mechanics, Mech. Rev., 50, 83-96
  • 4. Aoki S., Kishimoto K., Sakata M., 1981, Crack tip stress and strain singularity in thermally loaded elastic-plastic materials, J. Appl. Mech., 48, 428-429
  • 5. Atluri S.N., Shen S., 2002, The Meshless Local Petrov-Galerkin (MLPG) Method, Techn. Science Press
  • 6. Atluri S.N., 2004, The Meshless Local Petrov-Galerkin Method for Domain & BIE Discretizations, Techn. Science Press
  • 7. Belytschko T., Lu Y., Gu L., 1994, Element free Galerkin methods, Int. J. Num. Meth. Eng., 37, 229-256
  • 8. Betegon C., Hancock J.W., 1991, Two parameter characterization of elastic-plastic crack tip fields, J. Appl. Mech., 58, 104-110
  • 9. Cotterell B., Rice J.P., 1980, Slightly curved or kinked cracks, Int. J. Fracture, 16, 155-169
  • 10. Ding H., Liang J., Chen B., 1997, The unit point force solution for both isotropic and transversaly isotropic media, Communications in Numerical Methods in Engineering, 13, 95-102
  • 11. Dolbow J., Gosz M., 2002, On the computation of mixed-mode stress intensity factors in functionally graded materials, Int. J. Solids Structures, 39, 2557-2574
  • 12. Erdogan F., 1995, Fracture mechanics of functionally graded materials, Compos. Eng., 5, 753-770
  • 13. Eshelby J.D, Read W.T., Shockley W., 1953, Anisotropic elasticity with applications to dislocations, Acta Metallurgica, 1, 251-259
  • 14. Gao H., Chiu C.H., 1992, Slightly curved or kinked cracks in anisotropic elastic solids, Int. J. Solids Structures, 29, 947-972
  • 15. Gu P., Asaro R.J., 1997, Cracks in functionally graded materials, Int. J. Solids and Structures, 34, 1-17
  • 16. Jin Z.H., Noda N., 1993a, Minimization of thermal stress intensity factor for a crack in a metal-ceramic mixture, Trans. American Ceramic Soc. Functionally Gradient Materials, 34, 47-54
  • 17. Jin Z.H., Noda N., 1993b, An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading, Int. J. Eng. Sci., 31, 793-806.
  • 18. Jin Z.H., Noda N., 1994, Crack tip singular fields in nonhomogeneous materials, J. Appl. Mech., 64, 738-739
  • 19. Kfouri A.P., 1986, Some evaluations of the elastic T-term using Eshelby's method, Int. J. Fracture, 30, 301-315
  • 20. Kim J.H., Paulino G.H., 2002, Finite element evaluation of mixed mode stress intensity factors in functionally graded materials, Int. J. Num. Meth. Eng., 53, 1903-1935
  • 21. Kim J.H., Paulino G.H., 2003a, T-stress, mixed mode stress intensity factors, and crack initiation angles in functionally graded materials: A unified approach using the interaction integral method, Computer Meth. Appl. Mech. Eng., 192, 1463-1494
  • 22. Kim J.H., Paulino G.H., 2003b, The interaction integral for fracture of orthotropic functionally graded materials: Evaluation of stress intensity factors, Int. J. Solids and Structures, 40, 3967-4001
  • 23. Kim J.H., Paulino G.H., 2004, T-stress in orthotropic functionally graded materials: Lekhnitskii and Stroh formalisms, Int. J. Fracture, 126, 345-384
  • 24. Kishimoto K., Aoki S., Sakata M., 1980, On the path independent integral- J, J. Eng. Fracture Mech., 13, 841-850
  • 25. Kogl M., Gaul L., 2000, A 3-D boundary element method for dynamic analysis of anisotropic elastic solids, CMES: Computer Modeling in Eng. and Sciences, 1, 27-43
  • 26. Larsson S.G., Carlsson A.J., 1973, Inuence of nonsingular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials, J. Mech. Phys. Solids, 21, 263-277
  • 27. Lekhnitskii S.G., 1963, Theory of Elasticity of an Anisotropic Body, Holden Day
  • 28. Leevers P.S., Radon J.C., 1982, Inherent stress biaxiality in various fracture specimen geometries, Int. J. Fracture, 19, 311-325
  • 29. Mikhailov S.E., 2002, Localized boundary-domain integral formulations for problems with variable coeficients, Eng. Analysis with Boundary Elements, 26, 681-690
  • 30. Nakamura T., Parks D.M., 1982, Determination of elastic T-stresses along three-dimensional crack fronts using an interaction integral, Int. J. Solids Structures, 29, 1597-1611
  • 31. Nemat-Alla M., Noda N., 1996, Thermal stress intensity factor for functionally gradient half space with an edge crack under thermal load, Archive Appl. Mech., 66, 569-580
  • 32. Noda N., Jin Z.H., 1993a, Thermal stress intensity factors for a crack in a functionally gradient material, Int. J. Solids Structures, 30, 1039-1056
  • 33. Noda N., Jin Z.H., 1993b, Steady thermal stresses in an infinite nonhomogeneous elastic solid containing a crack, J. Thermal Stresses, 16, 181-196
  • 34. Noda N., Jin Z.H., 1995, Crack tip singularity fields in non-homogeneous body under thermal stress fields, JSME Int. Jour. Ser. A, 38, 364-369
  • 35. Nowacki W., 1975, Dynamic Problems of Thermoelasticity, PWN, Warsaw
  • 36. Olsen P.C., 1994, Determining the stress intensity factors KI , KII and the T-term via the conservation laws using the boundary element method, Eng. Fracture Mech., 49, 49-60
  • 37. Ozturk M., Erdogan F., 1997, Mode I crack problem in an inhomogeneous orthotropic medium, Int. J. Eng. Sci., 35, 869-883
  • 38. Ozturk M., Erdogan F., 1999, The mixed mode crack problem in an inhomogeneous orthotropic medium, Int. J. Fracture, 98, 243-261
  • 39. Paulino G.H., Jin Z.H., Dodds R.H., 2003, Failure of functionally graded materials, In: Comprehensive Structural Integrity, Vol. 2, Karihaloo B., Knauss W.G. (edit.), Elsevier Science, 607-644
  • 40. Paulino G.H., Kim J.H., 2004, A new approach to compute T-stress in functionally graded materials by means the interaction integral method, Eng. Fracture Mechanics, 71, 1907-1950
  • 41. Rao B.N., Rahman S., 2003, Mesh-free analysis of cracks in isotropic functionally graded materials, Eng. Fracture Mechanics, 70, 1-27
  • 42. Schclar S.N., 1994, Anisotropic Analysis Using Boundary Elements, Computational Mechanics Publications
  • 43. Shah P.D., Tan C.L., Wang X., 2005, T-stress solutions for two-dimensional crack problems in anisotropic elasticity using the boundary element method, Fatigue Fract. Eng. Mater. Struc., accepted for publication
  • 44. Sherry A.H., France C.C., Goldthorpe M.R., 1995, Compendium of T-stress solutions for two and three dimensional cracked geometries, Fatigue Fract. Eng. Mater. Struct., 18, 141-155
  • 45. Sih G.C., Paris P.C., Irwin G.R., 1965, On cracks in rectilinearly anisotropic bodies, Int. J. Fracture Mechanics, 1, 189-203
  • 46. Sladek V., Sladek J., Markechova I., 1993, An advanced boundary element method for elasticity problems in nonhomogeneous media, Acta Mechanica, 97, 71-90
  • 47. Sladek J., Sladek V., 1997a, Evaluations of the T-stress for interface cracks by the boundary element method, Eng. Fracture Mech., 56, 813-825
  • 48. Sladek J., Sladek V., 1997b, Evaluation of T-stresses and stress intensity factors in stationary thermoelasticity by the conservation integral method, Int. J. Fracture, 86, 199-219
  • 49. Sladek J., Sladek V., Fedelinski P., 1997, Integral formulation for elastodynamic T-stresses, Int. J. Fracture, 84, 103-116
  • 50. Sladek J., Sladek V., Atluri S.N., 2000, Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties, Computational Mechanics, 24, 456-462
  • 51. Sladek J., Sladek V., Van Keer R., 2003a, Meshless local boundary integral equation method for 2D elastodynamic problems, Int. J. Num. Meth. Eng., 57, 235-249
  • 52. Sladek J., Sladek V., Zhang Ch., 2003b, Application of meshless local Petrov-Galerkin (MLPG) method to elastodynamic problems in continuously nonhomogeneous solids, CMES: Computer Modeling in Eng. & Sciences, 4, 637-648
  • 53. Sladek J., Sladek V., Atluri S.N., 2004, Meshless local Petrov-Galerkin method in anisotropic elasticity, CMES: Computer Modeling in Eng. & Sciences, 6, 477-489
  • 54. Sladek J., Sladek V., Zhang Ch., 2005, An advanced numerical method for computing elastodynamic fracture parameters in functionally graded materials, Computational Materials Science, 32, 532-543
  • 55. Smith D.J., Ayatollahi M.R., Pavier M.J., 2001, The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading, Fatigue Fracture Eng. Material Structure, 24, 137-150
  • 56. Stehfest H., 1970, Algorithm 368: numerical inversion of Laplace transform, Comm. Assoc. Comput. Mech., 13, 47-49
  • 57. Sumpter J.D.G., 1993, An experimental investigation of the T-stress approach, In: Constraint Effects in Fracture, ASTM STP, 1171, 429-508
  • 58. Sumpter J.D.G., Hancock J.W., 1991, Shallow crack toughness of HY80 welds – an analysis based on T, Int. J. Press. Vess. Piping, 45, 207-229
  • 59. Suresh S., Mortensen A., 1998, Fundamentals of Functionally Graded Materials, Institute of Materials, London
  • 60. Yue Z.Q., Xiao H.T., Tham L.G., 2003, Boundary element analysis of crack problems in functionally graded materials, Int. J. Solids and Structures, 40, 3273-3291
  • 61. Wang C.Y., Achenbach J.D., 1996, Two dimensional time domain BEM for scattering of elastic waves in solids of general anisotropy, Int. Journal of Solids and Structures, 33, 3843-3864
  • 62. Williams M.L., 1957, On the stress distribution at the base of stationary crack, J. Appl. Mech., 24, 109-114
  • 63. Williams J.G., Ewing P.D., 1972, Fracture under complex stress - the angled crack problem, J. Fracture Mech., 8, 441-446
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0056-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.