PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detonation Initiation in H2-Air and CH4-Air Mixtures by Incident Shock Wave - One-Dimensional Numerical Simulation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detonation processes in gas mixtures for a long time have been an object of interest of many scientists studying combustion processes. This paper is the contribution to expanding growth of numerical investigations in detonation processes and increasing knowledge of physical aspects of this phenomenon. This paper presents detailed analysis of one-dimensional model of shock initiation of detonation wave. Two combustible mixtures hydrogen-air and methane-air were taken under consideration. Hydrogen-air mixture was analyzed with different concentration of hydrogen, from rich to very lean and with two Mach numbers of strong incident shock wave. The analysis of the transition to detonation process was performed for a bursting diaphragm experiment. In the presented simulation, an increase of Mach number of incident shock wave was made by releasing chemical energy in the driver section at the moment of bursting of the diaphragm. The hot gas in the driver section and fuel mixture in the shock tube is separated by inert gas section. The physical model deals with Euler conservation equations, using an ideal gas law. The set of conservation equations was integrated numerically with the FCT method. The heat release mechanism bases on integration of detailed chemical kinetics equation with the use of CHEMKIN package. Results of the investigation include distribution of thermodynamic and flow parameters in respective time sequence from hot spots formation to detonation relaxation, including collision of retonation wave and contact surface. The main events occurring in the shock tube simulation are also presented on position-time diagrams.
Słowa kluczowe
Rocznik
Strony
85--104
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, ITC, Nowowiejska 21/25, 00-665 Warszawa, Poland
  • Warsaw University of Technology, ITC, Nowowiejska 21/25, 00-665 Warszawa, Poland
Bibliografia
  • [1] Boris, J. P., and Book, D. L.: Solution for continuity equations by the method of flux corrected - transport. In Method of Computational Physics, Academic Press, New York, 1976.
  • [2] Boris, J. P., Landsberg M. A., Oran E. S., Gardner J. H.: LCPFCT- A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations., Naval Research Laboratory, 1993 NRL/MR/6410--93-7192
  • [3] Burks, T. L. and Oran, E. S.: A computational Study of the Chemical Kinetics of Hydrogen Combustion. Naval Research Laboratory Memorandum Report 4446, Washington D.C.
  • [4] Edwards, D. H., Thomas, G. O., and Williams, T. L.: Initiation of detonation by steady planer incident shock waves. Combustion and Flame 43, 1981.
  • [5] Fletcher, C. A. J.: Computational Techniques for Fluid Dynamics, Vol. II, Springer-Verlag 1991.
  • [6] Gordon, S. and McBride, B. J.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouget Detonations, NASA SP-273, 1971
  • [7] Kailasanath, K., Oran E. S.:, Ignition of Flamelets Behind Incident Shock Waves and the Transition to Detonation, Comb. Science and Techn., 1983 Vol. 34, pp. 345-362
  • [8] Kaplan, C. R., Oran E. S.: Mechanisms of Ignition and Detonation Formation in Propane-Air Mixture, Combust. Sci. and Tech. 1991 pp 185-205
  • [9] Kee, R. J., Rupley F. M.:, Miller J. A.: Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia Report 1991
  • [10] Khokhlov, A. M., Oran E. S.: Numerical Simulation of Deflagration-to-Detonation Transition: The Role of Shock-Flame Interactions in Turbulent Flames, Comb. and Flame, 1999, pp. 323-339.
  • [11] Lee, J. H.: Initiation of gaseous detonation. Ann. Rev. Phys. Chem. 28, 75
  • [12] Oran, E. S., J. P. Boris: Numerical Simulation of Reactive Flow, Elsevier, 1996
  • [13] Oran, E. S., T. R. Young, J. P. Boris: Weak and Strong Ignition. Numerical Simulation of Shock Tube Experiments, Combustion and Flame 48: 135-148 (1982)
  • [14] Oran, E. S., Young. T. R., Boris, J. P., Picone, J. M., and Edwards, D. H., Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1982. Pp. 573-582
  • [15] Voitsekhovskii, B. V., Mitrofanov. V. V., and Topchian. M. E.: The Structure of Detonation Front in Gases. Report WP-AFB FTC/MT/64/527. English Translation. Wright-Petterson Air Force Base. OH
  • [16] Warnatz J., Karbach V. (1997): C2 mechanism for methane-air combustion. http://www.ca.sandia.gov/tdf/3rdWorkshop/ch4mech.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0051-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.