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The paper presents procedure for the optimal allocation of thrust for ho-
rizontal motion of underwater robotic vehicles. Computation of propeller
thrusts from propelling forces and moments is an optimisation problem
based on a model, which the simplest form is unconstrained. In practi-
ce, however, where physical limitations must be taken into account, the
obtained in such a way solution can be unrealistic. To cope with those
difficulties, an algorithm for evaluation of the capacity of a propulsion
system to produce required forces and moments and, if necessary, finding
their feasible values is proposed. Due to computational simplicity, such
an approach is a good solution in real-time applications. A numerical
example is provided to demonstrate effectiveness and correctness of the
approach.
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1. Introduction

Nowadays, it is common to use underwater robotic vehicles (URVs) to
accomplish such missions as inspection of coastal and off-shore structures,
cable maintenance as well as hydrographical and biological surveys. Motion of
URVs in 6 degrees of freedom (DOF) can be described by the following vectors
(see e.g. Fossen, 1994; Lisowski, 1981)

η = [x, y, z, φ, θ, ψ]> v = [u, v, w, p, q, r]>

(1.1)

τ = [X,Y,Z,K,M,N ]>



842 J.Garus

where:
η – vector of the position and orientation in the earth-fixed

frame
x, y, z – coordinates of the position
φ, θ, ψ – coordinates of the orientation (Euler angles)
v – vector of linear and angular velocities in the body-fixed

frame
u, v, w – linear velocities along the longitudinal, transversal and

vertical axes
p, q, r – angular velocities about the longitudinal, transversal and

vertical axes
τ – vector of forces and moments acting on the vehicle in the

body-fixed frame
X,Y,Z – forces along the longitudinal, transversal and vertical

axes
K,M,N – moments about the longitudinal, transversal and vertical

axes.

Modern URVs are more and more frequently equipped with automatic con-
trol systems in order to execute complex manoeuvres without constant human
intervention. Basic modules of a control system are depicted in Fig. 1. An au-
topilot computes required propelling forces and moments (commands) τ d by
comparing the desired position and orientation of the robot with their cur-
rent estimates. The corresponding to them propeller thrusts f are calculated
in a thrust distribution module and transmitted to the propulsion system as
control inputs.

Fig. 1. A structure of the control system (d – vector of environmental disturbances)
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Both movement and positioning of an underwater robot is realised only by
changing propeller thrusts, which leads to variation of propelling forces and
moments. Control laws implemented in the autopilot are of a general character
and usually do not take into account constraints put on the maximum and
minimum values of thrusts developed by the propellers. It may cause that
the desired solution τ d can not be realised by the propulsion system due to
work of one or more thrusters in saturation. Such a situation can contribute
to deterioration of the control, and the behaviour of the robot may differ from
the required pattern significantly.

Therefore, thrust distribution is one of the tasks of the control system
that has essential influence on the quality of control. A procedure of thrust
allocation is proposed to be realised in two stages (Fig. 2). In the first stage, the
generating capacity of the dmanded commands τ d by the propulsion system
is checked and feasible commands τ ′d are determined (i.e. such values of forces
and moments which can be produced by the propulsion system). In the second
stage, the real allocation of thrusts among the propellers is carried out on the
base of τ ′d.

Fig. 2. A block diagram of the thrust distribution module

2. A procedure of thrust allocation for horizontal motion

In conventional URVs, the basic motion is movement in a horizontal plane
with some variation due to diving. URVs operate in a crab-wise manner in
4 DOF with small roll and pitch angles that can be neglected during normal
operations. Therefore, the spatial motion is regarded as a superposition of two
displacements: motion in the horizontal plane and motion in the vertical plane.
It allows one to divide the propulsion system into two independent subsystems
responsible for motion in the vertical and horizontal planes, respectively. A
general structure of such a system is shown in Fig. 3.
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Fig. 3. A structure of a power transmission system with 6 thrusters

The first subsystem enables motion in heave and consists of 2 thrusters.
The required force Zd is equal to the sum of their thrusts.

The second one assures motion in surge, sway and yaw, and composes of 4
thrusters mounted askew with respect to main symmetry axes of the vehicle
(see Fig. 4). Hence, the desired forces Xd and Yd acting in the longitudinal and
transversal axes and the moment Nd about the vertical axis are a combination
of thrusts produced by the thrusters.

Fig. 4. Layout of thrusters in the subsystem responsible for horizontal motion

Let us denote:

τ – vector of demanded commands

τ d = [τd1, τd2, τd3]
> = [Xd, Yd, Nd]

>
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f – thrust vector

f = [f1, f2, f3, f4]
>

and assume that components of both vectors are bounded

τ2di − (τ
max
i )2 ¬ 0 for i = 1, 2, 3

f2j − (f
max
j )2 ¬ 0 for j = 1, 2, 3, 4

(2.1)

Values of τmaxi and fmaxj depend on the design of propellers and configuration
of thrusters in the propulsion system.
As shown in Fossen (2002), for horizontal motion, the vector of required

propelling forces and moments τ d can be described as a function of the thrust
vector f by the following expression

τ d = T(α)f (2.2)

where
T(α) – thruster configuration matrix

T(α) =







cosα1 cosα2 cosα3 cosα4
sinα1 sinα2 sinα3 sinα4

d1 sin(α1 − ϕ1) d2 sin(α2 − ϕ2) d3 sin(α3 − ϕ3) d4 sin(α4 − ϕ4)







α – vector of azimuth angles, α = [α1, α2, α3, α4]
>

αj – angle between the longitudinal axis and direction of thrust of
the jth propeller fj

dj – distance of the jth thruster from the centre of gravity
ϕj - angle between the longitudinal axis and the line connecting the

centre of gravity with the jth thruster symmetry centre.

The thrust allocation problem, i.e. computation of f from τ d, is usual-
ly formulated as a least-squares optimisation problem and described in the
following form (see e.g. Garus, 2004; Sordelen, 1997)

f = T∗(α)τ d (2.3)

where the matrix T∗(α) = T>(α)[T(α)T>(α)]−1 is the generalized inverse.
This method of thrust allocation allows one to find the minimum-norm

solution, but it should be noted that (2.3) belongs to unconstrained optimi-
sation problems - i.e., there are no bounds on the elements of the vector f ,
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so the obtained values fj may not satisfy (2.1)2, and then the generation of
the desired vector τ d by the propulsion system is not possible. In such a case,
a new vector of commands meeting condition (2.1)2 must be determined. A
method of evaluation of this vector, called the vector of feasible commands
and denoted by τ ′d = [τ

′

d1, τ
′

d2, τ
′

d3]
>, is presented in the next section.

3. An algorithm for determination of feasible propelling forces

and moments

Assume that the propulsion system consists of n = 4 identical nonrotatio-
nal thrusters. It means that the quantities like: dj , αj and ϕj are constant
for every thruster. Hence, all elements of the configuration matrix T(α) are
constant.
Let us denote:

1. τmax1 , τmax2 and τmax3 – maximum values of the propelling forces and
moments generated by the propulsion system for horizontal motion

τmax1 =
n
∑

j=1

|τmax1j | =
n
∑

j=1

|fmaxj cosαj |

τmax2 =
n
∑

j=1

|τmax2j | =
n
∑

j=1

|fmaxj sinαj |

τmax3 =
n
∑

j=1

|τmax3j | =
n
∑

j=1

|fmaxj dj sin(αj − ϕj)|

2. O – origin of the Cartesian coordinate system,

3. P – point in the 3-dimensional space with coordinates (τd1, τd2, τd3),

4.
−−→
OP – position vector of the point P .

The evaluation of capacity of the propulsion system to generate the desi-
red propelling forces and moment τ d requires taking into consideration both
limitations (2.1) simultaneously.
The first one indicates that the vector τ d is produced only if the

position vector
−−→
OP is entirely contained in a cubicoid having vertexes

in points: (τmax1 , τmax2 , τmax3 ), (τmax1 , τmax2 ,−τmax3 ), (τmax1 ,−τmax2 , τmax3 ),
(τmax1 ,−τmax2 ,−τmax3 ), (−τmax1 , τmax2 , τmax3 ), (−τmax1 , τmax2 ,−τmax3 ),
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(−τmax1 ,−τmax2 , τmax3 ), (−τmax1 ,−τmax2 ,−τmax3 ) (see Fig. 5). Since the
components of the vector of demanded commands τ d are a linear combi-
nation of thrusts developed by all propellers, then fulfilling only condition
(2.1)1 does not guarantee their generation. Foe example, if to any element
of the vector τ d there corresponds an assignment τdi = τmaxi , then the full
power of the propulsion system is used to its generation and the rest of the
components are equal to zero. Therefore, the evaluation of the capacity of the
propulsion system to generation of the vector τ d requires giving consideration
to inequality (2.1)2.

Fig. 5. A view of the cubicoid and the position vector
−−→
OP

The analysis of values that elements of the vector τ d may take under
limitations (2.1) leads to the following conclusion: the quantities τd1, τd2 and
τd3 can be produced by the propulsion system if and only if the position

vector
−−→
OP is entirely contained in a trisoctahedron with vertexes in points:

(τmax1 , 0, 0), (0, τmax2 , 0), (0, 0, τmax3 ), (−τmax1 , 0, 0), (0,−τmax2 , 0), (0, 0,−τmax3 )
(see Fig. 6). This situation proceeds if the following inequality holds

|τd1|

τmax1
+
|τd2|

τmax2
+
|τd3|

τmax3
¬ 1 (3.1)

If (3.1) is false, then the point P = (τd1, τd2, τd3) lies outside the octa-
hedron and the vector τ d can not be generated. It means that the vector
of feasible commands τ ′d = [τ

′

d1, τ
′

d2, τ
′

d3]
> must be determined. Its elements,
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Fig. 6. A view of the trisoctahedron and the position vector
−−→
OP

Fig. 7. A block diagram of the algorithm for the determination of feasible commands
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on the assumption that reciprocal ratios of corresponding components of the
vectors τ d and τ

′

d are preserved

τ ′d1
τ ′d2
=
τd1

τd2

τ ′d1
τ ′d3
=
τd1

τd3
(3.2)

can be computed by means of the following equations

τ ′d1 = sgn τd1
( 1

τmax1
+
1

τmax2

∣

∣

∣

τd2

τd1

∣

∣

∣+
1

τmax3

∣

∣

∣

τd3

τd1

∣

∣

∣

)−1

(3.3)

τ ′d2 = sgn τd2
∣

∣

∣

τd2

τd1
τ ′d1

∣

∣

∣ τ ′d3 = sgn τd3
∣

∣

∣

τd3

τd1
τ ′d1

∣

∣

∣

Basing on the above considerations, an algorithm for the evaluation of the
vector τ d and determination of τ

′

d has been developed (see Fig. 7). Input
data to the algorithm are quantities τmax1 , τmax2 , τmax3 and the vector τ d. The
vector of feasible commands τ ′d is computed according to (3.3).

A proof of the dependence (3.3)

Not to decrease of generality of considerations it is assumed that τdi ­ 0
for i = 1, 2, 3. It allows to restrict analysis into a subspace limited by positive
semi-axes of the coordinate system (see Fig. 8).

Let A = (τmax1 , 0, 0), B = (0, τmax2 , 0), C = (0, 0, τmax3 ), P = (τd1, τd2, τd3)
and P ′ = (τ ′d1, τ

′

d2, τ
′

d3) be points in the 3-dimensional space. An equation of
a plane including the points A, B and C has a form

τ1

τmax1
+

τ2

τmax2
+

τ3

τmax3
= 1 (3.4)

Let us assume that the point P ′ = (τ ′d1, τ
′

d2, τ
′

d3) is a common point of a line

containing the position vector
−−→
OP and the plane defined by (3.4). Substituting

the coordinates of the point P ′ into (3.4) and taking into account requirements
(3.2), the following set of equations is formulated

τ ′d1
τmax1

+
τ ′d2
τmax2

+
τ ′d3
τmax3

= 1

(3.5)

τ ′d1
τ ′d2
=
τd1

τd2

τ ′d1
τ ′d3
=
τd1

τd3
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Fig. 8. A view of the position vectors
−−→
OP and

−−→
OP ′ for positive semi-axes of the

Cartesian coordinate system

Hence, solving (3.5) the following expressions for calculation of τ ′d1, τ
′

d2

and τ ′d3 are obtained

τ ′d1 =
( 1

τmax1
+
1

τmax2

τd2

τd1
+
1

τmax3

τd3

τd1

)−1

(3.6)

τ ′d2 =
τd2

τd1
τ ′d1 τ ′d3 =

τd3

τd1
τ ′d1

Finally, transformation of the above expressions to the Cartesian coordinate
system yields

τ ′d1 = sgn τd1
( 1

τmax1
+
1

τmax2

∣

∣

∣

τd2

τd1

∣

∣

∣+
1

τmax3

∣

∣

∣

τd3

τd1

∣

∣

∣

)−1

(3.7)

τ ′d2 = sgn τd2
∣

∣

∣

τd2

τd1
τ ′d1

∣

∣

∣ τ ′d3 = sgn τd3
∣

∣

∣

τd3

τd1
τ ′d1

∣

∣

∣

End of the prove

4. Numerical example

The computations are done for the following data of the propulsion system
of the underwater robot ”Ukwiał” designed and built for the Polish Navy (see
Garus, 2004):

fmaxi = 250 N di = 0.4 m for i = 1, 2, 3, 4



A method of determination of feasible propeller forces... 851

and

α = [29.0◦,−29.0◦, 151.0◦, 209.0◦]

ϕ = [−26.5◦, 26.5◦, 206.5◦, 153.5◦]

Hence

τmax1 =
4
∑

i=1

|τmax1i | =
4
∑

i=1

|fmaxi cosαi| = 875.0 N

τmax2 =
4
∑

i=1

|τmax2i | =
4
∑

i=1

|fmaxi sinαi| = 485.0 N

τmax3 =
4
∑

i=1

|τmax3i | =
4
∑

i=1

|fmaxi di sin(αi − ϕi)| = 332.0 Nm

Let us assume that τ d = [700.0,−120.0, 30.0]
> .

STEP 1
Calculate inequality (3.1) to check the capacity of the propulsion system in
order to generate the vector τ d

|τd1|

τmax1
+
|τd2|

τmax2
+
|τd3|

τmax3
¬ 1

|700.0|

875.0
+
| − 120.0|

485.0
+
|30.0|

332.0
¬ 1

1.14 ¬ 1.0

Since the inequality is false (i.e. the point P = (700.0,−120.0, 30.0) lies out-
side the trisoctahedron having the vertexes in points: (875, 0, 0), (0, 485, 0),
(0, 0, 332), (−875, 0, 0), (0,−485, 0), (0, 0,−332)), the vector of feasible com-
mands τ ′d must be determined.

STEP 2
Calculate the components of the vector τ ′d

τ ′d1 = sgn τd1
( 1

τmax1
+
1

τmax2

∣

∣

∣

τd2

τd1

∣

∣

∣+
1

τmax3

∣

∣

∣

τd3

τd1

∣

∣

∣

)−1

=

= sgn700.0
( 1

875
+
1

485

∣

∣

∣

−120.0

700.0

∣

∣

∣+
1

332

∣

∣

∣

30.0

700.0

∣

∣

∣

)−1

= 614.6

τ ′d2 = sgn τd2
∣

∣

∣

τd2

τd1
τ ′d1

∣

∣

∣ = sgn(−120.0)
∣

∣

∣

−120.0

700.0
614.6

∣

∣

∣ = −105.4

τ ′d3 = sgn τd3
∣

∣

∣

τd3

τd1
τ ′d1

∣

∣

∣ = sgn30.0
∣

∣

∣

30.0

700.0
614.6

∣

∣

∣ = 26.3
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To check the truth of the calculations, the ratios of the corresponding
components of the vectors τ d and τ

′

d are computed according to (3.2)

τd1

τd2
=
700.0

−120.0
= −5.8

τ ′d1
τ ′d2
=
614.6

−105.43
= −5.8

τd1

τd3
=
700.0

30.0
= 22.3

τ ′d1
τ ′d3
=
614.6

26.3
= 22.3

The obtained values indicate that the ratios are preserved. It confirms the
correctness of the proposed approach.

5. Conclusions

The paper presents a method of determination of feasible propelling forces
and moment for underwater robotic vehicles. For a robot moving in the ho-
rizontal plane, it is necessary to distribute the propelling forces and moment
τ d ∈ <

3 among n propellers in terms of the thrust f ∈ <n. Computation of
f from τ d is an optimisation problem based on a model, which in the simplest
form is unconstrained. In real applications, however, due to physical limita-
tions, (e.g. saturations), this task must be solved as a constrained optimisation
problem. To cope with those difficulties, a procedure of checking the required
forces and moments and the determination of feasible ones has been worked
out. It allows one to find such a vector τ ′d that unconstrained optimisation
methods can be used without any restrictions.

The main advantage of the approach is its simplicity and flexibility with re-
gard to the construction of the vehicle power transmission system and number
of thrusters. The developed procedure of determination of feasible commands
is of a general character and can be successfully applied to all types of URVs.
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Metoda wyznaczania dopuszczalnych sił napędowych i momentu

napędowego dla robota podwodnego

Streszczenie

Praca dotyczy zagadnienia rozdziału mocy w układzie napędowym robota pod-
wodnego. Dla ruchu w płaszczyźnie poziomej wektor naporów f wyznaczany jest na
podstawie wektora zadanych sił i momentów napędowych τ d. Zadanie to rozpatry-
wane jest najczęściej jako problem optymalizacyjny bez ograniczeń. Otrzymane w ten
sposób rozwiązanie zapewnia wygenerowanie żądanych wartości τ d tylko wtedy, gdy
nie występuje żądanie rozwinięcia przez którykolwiek z pędników naporu przekracza-
jącego wartość graniczną. Jeżeli ma to miejsce, to żądane siły i moment nie mogą być
wytworzone. Stąd proponuje się realizację procedury rozdziału mocy dwuetapowo.
W etapie pierwszym następuje ocena możliwości wytworzenia przez układ napędowy
zadanych sił i momentu τ d i wyznaczane są ich wartości dopuszczalne τ

′

d
, tj. takie,

które możliwe są do wygenerowania. W etapie drugim, na podstawie τ ′
d
, dokonywany

jest właściwy przydział naporów na poszczególne pędniki.
Zamieszczony w pracy algorytm wyznaczania dopuszczalnych sił napędowych

i momentu napędowego opracowany został z ukierunkowaniem na jego praktyczne
zastosowanie w układzie automatycznego sterowania robotem podwodnym „Ukwiał”,
eksploatowanym na okrętach Marynarki Wojennej.
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