PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and control of mechatronic systems by the descriptor approach

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie i sterowanie układów mechatronicznych metodą deskrypcyjną
Języki publikacji
EN
Abstrakty
EN
In recent years, the analysis and synthesis of control systems in a descriptor form has been established. The general description of dynamical systems by differential-algebraic equations (DAE) is important for many applications in various disciplines, but particularly in mechatronics. In this contribution, the pros and cons of the modelling of mechatronic systems by differential-algebraic equations are discussed with application of subsystem modelling. Additionally, the actual state of the art simulation, analysis and design of descriptor systems are presented.
PL
W ostatnich latach sformułowano i spopularyzowano problem analizy i syntezy układów sterujących w postaci deskrypcyjnej. Ogólny opis układów dynamicznych za pomocą równań różniczkowo-algebraicznych (DAE) ma ogromne znaczenie aplikacyjne w różnych dziedzinach nauki, w szczególności w zakresie mechatroniki. W prezentowanej pracy przedyskutowano wszystkie "za" i "przeciw" modelowania układów mechatronicznych równaniami różniczkowo-algebraicznymi z zastosowaniem podziału opisywanego układu na podsystemy. Ponadto przedstawiono najnowocześniejsze metody symulacji, analizy i projektowania układów deskrypcyjnych.
Rocznik
Strony
593--607
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
Bibliografia
  • 1. Arnold M., 1998, Zur Theorie und zur numerischen Lösung von Anfangswertproblemen für differentiell-algebraische Systeme von höhrem Index, VDI-Verlag, Fortschr.-Ber. VDI, Reihe 20, Nr. 264, Düsseldorf
  • 2. Bajic V., 1992, Lyapunov's Direct Method in the Analysis of Singular Systems and Networks, Shades Technical Publications, Hillcrest, RSA
  • 3. Bender D.J, Laub A.J., 1987, The linear-quadratic optimal regulator for descriptor systems, IEEE Trans. Autom. Control, 32, 672-688
  • 4. Brenan K.E., Campbell S.L., Petzold L.R., 1989, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland, New York
  • 5. Bunse-Gerstner A., Mehrmann V., Varga A., 2000, Numerische Methoden zur robusten Steuerung. DFG-Forschungsprojekt, 1999/2000, Zentrum für Technomathematik, Tätigkeitsbericht, Universität Bremen
  • 6. Campbell S.L., Nikoukhah R., Delebecque F., 1999, Nonlinear descriptor systems, In: Advances in Control-Highlights of ECC'99, P.M. Frank (Edit.), Springer, London, 247-281
  • 7. Cobb D., 1983, Descriptor variable systems and optimal state regulation, IEEE Trans. Autom. Control, 28, 601-611
  • 8. Dai L., 1989, Singular Control Systems, Volume 118 of Lecture Notes in Control and Information Sciences, Springer, Berlin-Heidelberg
  • 9. Dmitruk A.V., 1993, Maximum principle for the general optimal control problem with phase and regular mixed constraints, Comput. Math. Modelling, 4, 364-377
  • 10. Führer C., 1988, Differential-algebraische Gleichungssysteme in mechanischen Mehrkörpersystemen: Theorie, numerische Ansätze und Anwendungen, Dissertation, Mathematisches Institut und Institut für Informatik, TU München
  • 11. Funk P., 1970, Variationsrechnung und ihre Anwendung in Physik und Technik, (2nd ed.), Springer, Berlin-Heidelberg
  • 12. Gear C.W., 1971, The simultaneous numerical solution of differentialalgebraic equations, IEEE Trans. Circuit Theory, 18, 89-95
  • 13. Hairer E., Wanner G., 1991, Solving Ordinary Di_erential Equations II, Stiff and Differential-Algebraic Problems, Springer, Berlin
  • 14. Hartl R.F., Sethi S.P., Vickson R.G., 1995, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37, 181-218
  • 15. Jonckheere E., 1988, Variational calculus for descriptor problems, IEEE Trans. Autom. Control, 33, 491-495
  • 16. Kampowski W., Rentrop P., Schmidt W., 1992, Classi_cation and numerical simulation of electric circuits, Surv. Math. Ind., 2, 23-65
  • 17. Leitmann G., 1981, The Calculus of Variations and Optimal Control, Plenum Press, New York
  • 18. Lewis F.L., 1986, A survey of linear singular systems, Circuits, Syst. Signal Processing, 5, 3-36
  • 19. Luenberger D.G., 1977, Dynamic equations in descriptor form, IEEE Trans. Autom. Control, 22, 312-321
  • 20. Masubuchi I., Kamitane Y., Ohara A., Suda N., 1997, H1-Control for descriptor systems: a matrix inequaltiy approach, Automatica, 33, 669-373
  • 21. Mathis W., 1992, Analysis of linear time-invariant network in the frequancy domain, In: Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices, R.E. Bank, R. Bulirsch, H. Gajewski, K. Mertens (Edit.), Birkhäuser, Basel, 83-90
  • 22. Müller P.C., 1993, Stability of linear mechanical systems with holonomic constraints, Appl. Mech Rev., 46, 11, Part 2, 160-164
  • 23. Müller P.C., 1995, Descriptor systems: a new way to model mechatronic systems?, Proc. 3rd European Control Conference, Rome, 3, Part 2, 2725-2729
  • 24. Müller P.C., 1998a, Analysis and control design of linear descriptor systems, In: Advances in Systems, Signals, Control and Computers, V. Bajic (Edit.), 1, 11-17, Center for Engineering Research, Technikon Natal, Durban, RSA
  • 25. Müller P.C., 1998b, Stability and optimal control of nonlinear descriptor systems: a survey, Appl. Math. Comp. Sci., 8, 269-286
  • 26. Müller P.C., 1999a, Linear control design of linear descriptor systems, Proc. 14th IFAC World Congress, Vol. C, 31-36, Pergamon, Beijing
  • 27. Müller P.C., 1999b, Verallgemeinerte Luenberger-Beobachter für lineare Deskriptorsysteme, Z. Angew. Math. Mech., 79, Suppl. 1, S9-S12
  • 28. Müller P.C. 2000, Linear-quadratic optimal control of non-proper descriptor systems, In: CD-Proc. 14th Internat. Symp. Mathematical Theory of Networks and Systems (MTNS 2000), Universite de Perpignan
  • 29. Müller P.C., 2003, Optimal control of proper and nonproper descriptor systems, Arch. Appl. Mech., 72, 875-884
  • 30. Petzold L.R., 1983, A description of DASSL: A Differential/Algebraic System Solver, In: Scientiffc Computing, R.S. Stepleman et al. (Edit.), 65-68, North-Holland, Amsterdam
  • 31. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F., 1962, The Mathematical Theory of Optimal Processes, Interscience Publishers, New York
  • 32. Rehm A., 2003, Control of Linear Descriptor System: A Matrix Inequality Approach, Dissertation, Universitat Stuttgart
  • 33. Rosenberg R.M., 1977, Analytical Dynamics of Discrete Systems, Plenum Press, New York
  • 34. Rükgauer A., 1997, Modulare Simulation mechanischer Systeme mit Anwendung in der Fahrzeugdynamik, VDI, 248, VDI-Fortschr.-Ber., Reihe 20, Düsseldorf
  • 35. Rükgauer A., Schiehlen W., 1997, Simulation of mdular dnamic sstems, Proc. 2nd MATHMOD, Vienna, 329-334
  • 36. Schiehlen W., 1990, Multibody Systems Handbook, Springer, Berlin
  • 37. Simeon B., 1994, Numerische Integration mechanischer Mehrkorpersysteme: Projizierende Deskriptorformen, Algorithmen und Rechenprogramme, VDI, 130, VDI-Fortschr.-Ber., Reihe 20, Dusseldorf
  • 38. Stefani G., Zezza P., 1996, Optimality conditions for a constrained control problem, SIAM J. Control and Optimization, 34, 635-659
  • 39. Takaba K., Morikira N., Katayama T., 1994, H∞-Control for descriptor systems { a J-spectral factorization approach, Proc. 33rd IEEE Conf. Decision and Control, 2251-2256
  • 40. Varga A., 2000, Descriptor System Toolbox for MATLAB, Institute of Robotics and Mechatronics, German Aerospace Center, Oberpfaffenhofen
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0041-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.