ISSN 0209-2069

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE

EXPLO-SHIP 2004

Jerzy Brzózka, Jerzy Szcześniak

Układ regulacji prędkości obrotowej typu MFC z regulatorem rozmytym

Słowa kluczowe: układ regulacji z modelem (MFC), regulator rozmyty, regulacja prędkości obrotowej silnika spalinowego

Porównano symulowane przebiegi prędkości obrotowej silnika spalinowego w trzech strukturach: w układzie regulacji MFC z regulatorem fuzzy PI oraz w dwóch układach regulacji klasycznej z regulatorami PI oraz fuzzy PI. Symulacje zostały wykonane dla różnych parametrów nieliniowego modelu obiektu przy dwóch wymuszeniach skokowych. Porównania przebiegów dokonano korzystając z kryterium całki z kwadratu błędu.

Model Following Control (MFC) of Engine Speed Control with Fuzzy Logic Controller

Key words: model following control (MFC), fuzzy logic controller, governor

In the paper are compared simulated diesel engine speed runs in three structures: in MFC control system with fuzzy PI controller and in two classic control systems with PI and fuzzy PI controllers. Simulations were conducted for different non-linear object model parameters with two unit step functions. The integral of the square of the error (ISE) was used for the comparison of unit step responses.

Wprowadzenie

W artykule [1] przedstawiono wyniki badań symulacyjnych, nowego układu regulacji prędkości obrotowej silnika okrętowego, którego schemat zamieszczono na rysunku 1.

Rys. 1. Struktura odpornego układu regulacji prędkości obrotowej z modelem M(s) procesu rzeczywistego P(s), regulatorem procesu rzeczywistego R(s) oraz regulatorem $R_m(s)$ modelu M(s). Oznaczenia sygnałów: d(s) – zakłócenia, y(s) – wielkość regulowana procesu, $y_m(s)$ – pomocnicza wielkość regulowana, e(s) – sygnał błędu dla regulatora procesu, $e_m(s)$ – sygnał błędu dla regulatora modelu, $y_0(s)$ – wartość zadana procesu (prędkości obrotowej)

Fig. 1. The structure of a robust speed control system with a plant model M(s), plant P(s), plant (process) governor R(s), model governor $R_m(s)$

Układ regulacji z rysunku 1 nosi nazwę układu regulacji z modelem (*Model Following Control, MFC*), a charakterystyczną jego cechą jest to, że proces rzeczywisty P(s) jest sterowany sumą dwóch sygnałów: z regulatora modelu $R_m(s)$ i z regulatora procesu R(s).

Koncepcja układów regulacji z modelem procesu (obiektu) jest dobrze znana od dawna w automatyce, ale stosowane dotychczas struktury układów regulacji – w odróżnieniu od przedstawionej na rysunku 1 – wymagały dokładnego modelu procesu (obiektu). Praktycznie rzecz biorąc warunek ten jest nie do spełnienia i dlatego znaczenie układów regulacji z modelem było małe. Sytuację tę zmienia zasadniczo zastosowanie układu z rysunku 1, bo po pierwsze – model procesu rzeczywistego może być przybliżony, a po drugie – układ ten jest odporny na nieuchronne perturbacje (zmiany) parametrów procesu rzeczywistego. Skutkiem tego są dobre własności tego układu, takie jak:

- wysoka odporność na perturbacje występujące w procesie;
- prostota układu przy jednoczesnych własnościach układu adaptacyjnego;

Układ regulacji prędkości obrotowej typu MFC z regulatorem rozmytym

- dobre tłumienie zakłóceń;
- kluczowe znaczenie regulatora procesu R(s) w oddziaływaniu na wielkość regulowaną y(s) (regulator $R_m(s)$ działa tylko na pomocniczą wielkość regulowaną $y_m(s)$). W przypadku, gdy $R(s) = R_m(s)$ układ regulacji MFC traci swoje własności i przechodzi w jednopętlowy klasyczny układ regulacji automatycznej.

Zwykle, w strukturze MFC, regulator jest projektowany dla pewnego modelu reprezentującego obiekt lub proces rzeczywisty. Transmitancja modelu różni się jednak zawsze od transmitancji procesu o pewną wielkość perturbacji $\Delta(s)$; stąd $P(s) = M(s) [1 + \Delta(s)]$.

W badaniach symulacyjnych przyjęto następującą transmitancję dynamiki modelu procesu w torze dawka paliwa – moment obrotowy:

$$M(s) = \frac{1}{(0,05s+1)^3}$$

Wartości parametrów transmitancji modelu procesu rzeczywistego dobrano metodą eksperymentu symulacyjnego.

Transmitancją procesu P(s) jest tutaj inercja pierwszego rzędu ze stałym opóźnieniem.

Autorzy artykułu podjęli próbę zastosowania w strukturze MFC regulatora rozmytego. Zastosowanie rozmytego regulatora procesu w strukturze MFC jest ze wszech miar uzasadnione, a to ze względu na niemożliwość dokładnej identyfikacji procesu, zmiany jego parametrów w czasie pracy, itp., czego konsekwencją są trudności w doborze konwencjonalnego regulatora, jego nastaw, a w dalszej kolejności zagwarantowania poprawnej pracy układu regulacji procesu. Wykorzystanie regulatora rozmytego daje możliwość implementacji wiedzy eksperta, co prowadzi do optymalizacji procesu, zmniejszenia zużycia materiałów i energii. Regulatory rozmyte są odmianą regulatorów nieliniowych, a ich stosowanie jest zalecane do procesów o zmiennych parametrach.

Jako regulator procesu wybrano i zaprojektowano rozmyty regulator PI. Prawo regulacji dyskretnego regulatora PI można zapisać następująco:

$$\Delta u(k) = k_p \Delta e(k) + \frac{1}{T_i} e(k)$$

gdzie:

 $\Delta u(k) = u(k) - u(k-1)$ jest zmienną sterującą (sygnałem wyjściowym regulatora) między dwoma chwilami próbkowania,

Jerzy Brzózka,	Jerzy Szc	ześniak
----------------	-----------	---------

$e(k) = y_o - y(k)$	jest	sygnałem	błędu	(sygnałem	wejściowym)						
	w ch	wili próbko [.]	wania <i>k</i> ,								
$\Delta e(k) = e(k) - e(k-1)$	$\Delta e(k) = e(k) - e(k-1)$ jest różnicą błędu między dwoma chwilami prób-										
	kowa	unia,									
k – oznacza k-tą chwilę próbkowania.											
Rozmyty regulator typu PI składa się z reguł:											

Rozinyty regulator typu r i składa się z regu

JEŻELIe(k) jest <symbol własności>I $\Delta e(k)$ jest <symbol własności>TO $\Delta u(k)$ jest <symbol własności>

Jeżeli przyjąć, że sygnały e(k) i $\Delta u(k)$ przyjmują 7 wartości: NB – duża ujemna, NM – średnia ujemna, NS – mała ujemna, PB – duża dodatnia, PM – średnia dodatnia, PS – mała dodatnia, ZO – zero, to można napisać 49 reguł (7×7) dla rozmytego regulatora PI, np.:

JEŻELI	e(k) jest NB	Ι	$\Delta e(k)$ jest NB	TO	$\Delta u(k)$ jest NB
JEŻELI	e(k) jest NM	Ι	$\Delta e(k)$ jest NB	TO	$\Delta u(k)$ jest NB
JEŻELI	e(k) jest NS	Ι	$\Delta e(k)$ jest NB	TO	$\Delta u(k)$ jest NB
			:		
JEŻELI	e(k) jest PM	Ι	$\Delta e(k)$ jest PS	ТО	$\Delta u(k)$ jest PB

Ta baza reguł zapisana w tablicy ma postać:

$\frac{\Delta e(k)}{e(k)}$	NB	NM	NS	ZO	PS	РМ	PB
NB	NB	NB	NB	NB	NM	NS	ZO
NM	NB	NB	NB	NM	NS	ZO	PS
NS	NB	NB	NM	NS	ZO	PS	PM
ZO	NB	NM	NS	ZO	PS	PM	PB
PS	NM	NS	ZO	PS	PM	PB	PB
PM	NS	ZO	PS	PM	PB	PB	PB
PB	ZO	PS	PM	PB	PB	PB	PB

Dla wszystkich sygnałów (e, Δe i Δu) przyjęto trójkątne funkcje przynależności (rys. 2).

Rys. 2. Funkcje przynależności rozmytego regulatora PI; a) dla sygnału e i Δe , b) dla sygnału uFig. 2. Membership functions of a fuzzy PI controller; a) for signal e and Δe , b) for signal u

Zaprojektowany rozmyty regulator PI przedstawia rysunek 3.

Fig. 3. The Simulink model of fuzzy logic controller used in simulations with examples of parameter values

W artykule zostały porównane wyniki badań symulacyjnych dla trzech układów regulacji z regulatorem:

- fuzzy PI procesu rzeczywistego w strukturze MFC (rys. 4),
- PI w strukturze klasycznej (rys. 5) [2, 3],
- fuzzy PI w strukturze klasycznej (rys. 6).

Jerzy Brzózka, Jerzy Szcześniak

Rys. 4. Układ regulacji prędkości obrotowej silnika napędu głównego statku o strukturze MFC z rozmytym regulatorem PI procesu. Oznaczenia: T_i – czas całkowania, k_p – współczynnik wzmocnienia, T_c – stała czasowa procesu spalania, T_{wal} – stała czasowa mas wirujących wału i śruby napędowej, *tau* – czas opóźnienia, y₀ – zadana wartość prędkości obrotowej

Fig. 4. The main engine speed control system a with PI fuzzy controller

Rys. 5. Klasyczny układ regulacji prędkości obrotowej silnika napędu głównego statku z regulatorem PI. Oznaczenia jak na rys. 4 *Fig. 5. The classical main engine speed control system with a PI controller*

Układ regulacji prędkości obrotowej typu MFC z regulatorem rozmytym

Porównanie przebiegów wybranych układów regulacji

Porównania działania wybranych układów (przy zmianach wartości zadanej i zakłóceń) dokonano metodą oceny przebiegów przejściowych, wykorzystując całkę z kwadratu błędu.

Tabela 1 przedstawia wartości całki z kwadratu błędu, przy skokowej zmianie wartości zadanej ($y_0 = I(t)$) dla różnych kombinacji wartości parametrów obiektu, jak czas opóźnienia, stała czasowa, występowanie nieliniowości. We wszystkich tabelach przyjęto, że skrót e.mfc oznacza strukturę układu regulacji przedstawioną na rysunku 4, e.klas strukturę z rysunku 5, a e.klas_fuzzy strukturę, jak na rysunku 6. Minimalna wartość całki osiągana w tych układach jest zaznaczona czcionką pogrubioną. W kolumnie 1 nastawy regulatorów dobrano tak, aby zapewnić (w przybliżeniu) taką samą wartość całki we wszystkich trzech układach, traktując to jako stan wyjściowy do symulacji.

Tał	oela	1
1 44	Julia	

	Liniowy				Nieliniowość pomp							
z(t)=0 yo=1					<i>a</i> = <-0,2;0,2>				<i>a</i> = <-0,3;0,3>		<i>a</i> = <-0,1;0,2>	a = <-0,2;0,1>
	τ=0,05 =0,1	τ=0,05 T=1	τ=0,5 T=0,1	<i>τ</i> =0,5 <i>T</i> =1	τ=0,05 T=0.1	τ=0,05 T=1	τ=0,5 T=0,1	<i>τ</i> =0,5 <i>T</i> =1	τ=0,05 T=0,1	<i>τ</i> =0,5 <i>T</i> =1	τ=0,05 T=0,1	$\tau = 0.05$ T = 0.1
	1	2	3	4	5	6	7	8	9	10	11	12
e.mfc	1,485	2,698	2,045	3,850	1,504	2,607	2,044	3,791	1,547	3,721	1,458	1,525
e.klas	1,669	1,980	3,009	6,145	1,714	2,014	2,687	3,977	1,720	3,613	1,573	1,745
e.klas. fuzzy	1,611	4,837	3,495	127,5	1,750	4,522	3,226	24,47	1,833	19,58	1,726	1,697

Jerzy Brzózka, Jerzy Szcześniak

Tabela 1 cd.

z(t)=0 yo=1	Z nasyceniem <-1,1;1,1>				N + n	a = < -0asycenie	ość pomj ,2;0,2> <-1,1;1,	p ,1>	Nieliniowość pomp <i>a</i> = <-0,1;0,2> + nasycenie <-1,2;1,1>			
	τ=0,05 T=0,1	τ=0,05 T=1	τ=0,5 T=0,1	τ=0,5 T=1	τ=0,05 T=0,1	τ=0,05 T=1	<i>т</i> =0,5 <i>T</i> =0,1	τ=0,5 T=1	τ=0,05 T=0,1	τ=0,05 T=1	τ=0,5 T=0,1	τ=0,5 T=1
	13	14	15	16	17	18	19	20	21	22	23	24
e.mfc	1,490	1,913	2,012	2,588	1,483	2,707	2.139	3,418	1,483	2,402	2,139	2,852
e.klas	1,865	2,443	2,603	3,629	1,913	2,538	2,711	3,623	1,865	2,453	2,632	3,550
e.klas. fuzzy	1,783	4,475	3,105	11,59	1,920	4,608	3,201	11,75	1,894	4,484	3.126	12,17

Tabela 2 przedstawia wartość całki z kwadratu sygnału błędu w przypadku wystąpienia zakłócenia (z(t) = 0,2*I(t)). Wartości parametrów układu (obiektu) regulacji, w poszczególnych kolumnach są identyczne, jak w tabeli 1.

Tabela	2
--------	---

z(t) =					Nieliniowość pomp							
0,2 yo = 1		Linic	owy			<i>a</i> = <-0,2;0,2>),3;0,3>	<i>a</i> = <-0,1;0,2>	<i>a</i> = <-0,2;0,1>
	τ=0,05 T=0,1	τ=0,05 T=1	τ=0,5 T=0,1	<i>τ</i> =0,5 <i>T</i> =1	τ=0,05 T=0,1	<i>τ</i> =0,05 <i>T</i> =1	<i>τ</i> =0,5 <i>T</i> =0,1	<i>τ</i> =0,5 <i>T</i> =1	τ=0,05 T=0,1	τ=0,5 T=1	τ =0,05 T=0,1	τ =0,05 T=0,1
	1	2	3	4	5	6	7	8	9	10	11	12
e.mfc	1,485	2,698	2,045	3,850	1,485	2,607	2,000	3,971	1,545	3,721	1,440	1,520
e.klas	1,669	1,980	3,009	6,145	1,714	2,014	2,687	3,977	1,719	3,613	1,673	1,745
e.klas. fuzzy	1,611	4,837	3,495	127,5	1,744	4,522	3,226	24,47	1,833	19,57	1,721	1,699
z(t) = = 0,2 yo=1	Z nasyceniem <-1,1;1,1>				Ni + na	eliniowo $a = < -0$, sycenie	ość por 2;0,2> <-1,1;1	np .,1>	Nieliniowość pomp <i>a</i> = <-0,1;0,2> + nasycenie <-1,2;1,1>			
	τ=0,05 T=0,1	τ=0,05 T=1	<i>т</i> =0,5 <i>T</i> =0,1	τ=0,5 T=1	τ=0,05 T=0,1	τ=0,05 T=1	τ=0,5 T=0,1	τ=0,5 T=1	τ=0,05 T=0,1	τ=0,05 T=1	$\tau=0,5$ T=0,1	τ=0,5 T=1
	13	14	15	16	17	18	19	20	21	22	23	24
e.mfc	1,504	2,323	2,603	8,953	1,545	2,118	2,103	7,279	1,549	2,075	2,244	8,120
e.klas	1,881	2,467	2,622	3,661	2,051	2,698	2,859	3,710	1,963	2,570	2,737	3,684
e.klas. fuzzy	1,805	4,961	3,200	18,24	2,093	4,731	3,407	18,32	2,014	4,671	3,240	18,16

Wnioski

Dla przyjętego kryterium oceny układów regulacji, **układ o strukturze MFC okazał się najlepszy** zarówno w przypadku zmian wartości zadanej (w tabeli 1 kryterium całki z kwadratu błędu spełnione jest w 20 na 24 przebadane przypadki), jak i zmian zakłóceń (w tabeli 2 przyjęte kryterium spełnione jest w 18 na 24 zbadane przypadki). Analiza wyników odbiegających od powyższego stwierdzenia, tj. czterech przypadków z tabeli 1 (poz. 2, 6, 10, 18) oraz sześciu z tabeli 2 (poz. 2, 6, 10, 16, 20, 24) pozwala wnioskować, że układ MFC jest słabo odporny na duże zmiany stałej czasowej procesu. Przykładowe przebiegi wielkości regulowanej z tabeli 1 poz. 2, 10, 18 przedstawiono na rysunkach 7, 8, 9. I tak przebiegi z poz. 2 ilustruje rysunek 7.

Rys. 7. Przebieg y(t) z parametrami według tabeli 1 poz. 2 *Fig. 7. The unit step response of* y(t) *with parameters from Table 1 item 2*

Duża wartość całki dla układu MFC w przebiegach poz. 2 i 6 wynika z bardzo wolnego zanikania procesu przejściowego w tym układzie. Wszystkie przebiegi dążą do wartości zadanej, przy czym najszybciej zanika przebieg przejściowy w klasycznym układzie regulacji; przebiegi przejściowe w układzie MFC i klasycznym z regulatorem rozmytym zanikają po czasie kilkakrotnie dłuższym.

Przebiegi z parametrami według poz. 10 przedstawia rysunek 8.

Na podstawie przebiegów (z rys. 8) można wnioskować, że wielkość przeregulowania w układzie MFC jest nieco większa niż w układzie klasycznym, jednak układ MFC jest z punktu widzenia małej wartości błędu ustalonego, dużo lepszy niż układ klasyczny. Natomiast układ regulacji z rozmytym regulatorem PI jest niestabilny.

Przebiegi wielkości regulowanej według poz. 18 przedstawiono na rysunku 9.

Rys. 8. Przebieg y(t) z parametrami według tabeli 1 poz. 10 Fig. 8. The unit step response of y(t) with parameters from Table 1 item 10

Rys. 9. Przebieg y(t) z parametrami według tabeli 1 poz. 18 Fig. 9. The unit step response of y(t) with parameters from Tble 1 item 18

Jak to wynika z rysunku 9, w układzie MFC wielkość regulowana y(t) zanika dużo wolniej niż w klasycznym układzie regulacji z regulatorem PI, który daje jednak dużą odchyłkę dynamiczną w początkowej fazie. Układ z rozmytym regulatorem PI uzyskuje stan ustalony po czasie dużo dłuższym niż pozostałe układy.

Podobne wnioski można wyciągnąć analizując wyniki dla przypadku wymuszenia od strony zakłócenia zestawione w tabeli 2 (poz. 2, 6, 10, 16, 20, 24).

Uzyskane wyniki zastosowania układu MFC do regulacji prędkości obrotowej silnika są bardzo obiecujące, ale zaproponowana struktura MFC z regulatorem rozmytym wymaga zarówno dalszych badań teoretycznych i eksperymentalnych. Układ regulacji prędkości obrotowej typu MFC z regulatorem rozmytym

Literatura

- Brzózka J., Szcześniak J., Propozycja nowego algorytmu regulacji prędkości obrotowej silnika okrętowego, Zeszyty Naukowe Wyższej Szkoły Morskiej w Szczecinie nr 71, Szczecin 2003, s. 95 – 103.
- 2. Kowalski Z., *Badania symulacyjne podsystemów napędowych statku*, Zeszyty Naukowe Politechniki Gdańskiej, Elektryka nr 49, Gdańsk 1980.
- Ito Masanori, Hirose Noriki, Shimizu Etsuro, Sato Hiroshi, Nakatani Toshihiko, *Main engine revolution control for ship with direct drive volume control system*, Preceedings of the 6th International Symposium on Marine Engineering Tokyo, Japan, October 23rd to 27th, 2000.

Wpłynęło do redakcji w lutym 2004 r.

Recenzenci

prof. dr hab. inż. Lesław Będkowski dr hab. inż. Jerzy Listewnik, prof. AM

Adresy Autorów

dr inż. Jerzy Brzózka e-mail: jb@wsm.szczecin.pl

dr inż. Jerzy Szcześniak e-mail: scesniak@wsm.szczecin.pl

Akademia Morska w Szczecinie Zakład Automatyki Okrętowej ul. Podgórna 51/53, 70-205 Szczecin