PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unsteady friction modelling in transient pipe flow simulation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents comparative analysis of unsteady pressure course calculation in closed conduits using selected hydraulic resistance models incorporating quasi-steady and unsteady friction models. Calculation was carried out for laminar and turbulent initial flows as tested by E. L. Holmboe and W. T. Rouleau. The results enabled qualitative and quantitative assessment of methods used to calculate friction losses. The assessment has confirmed that the commonly applied method of hydraulic resistance calculation (compatible with the quasi-steady flow hypothesis) does not guarantee satisfactory agreement between calculated and recorded hydraulic transients. It has been proven that the unsteady friction models based on weighting function of past flow velocity changes show superiority over models based on assumption that the portion of energy losses related to flow unsteadiness is proportional to the first derivative of liquid velocity.
Rocznik
Tom
Strony
83--97
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • The Szewalski Institute of the Fluid Flow Machinery of the Polish Academy of Sciences 80-952 Gdańsk, ul J, Fiszera14, PO Box 627, Poland
  • The Szewalski Institute of the Fluid Flow Machinery of the Polish Academy of Sciences, 80-952 Gdańsk, ul J, Fiszera 14, PO Box 627, Poland
Bibliografia
  • 1. Adamkowski, A.: Experimental and theoretical investigations of waterhammer attenuation by means of cut-off and by-pass valves in pipeline systems of hydraulic turbomachines, Scientific Reports of the IFFM PAS, No.461/1423/96, Gdańsk 1996, (in Polish)
  • 2. Adamkowski, A.: Case Study: Lapino Power Plant penstock failure, ASCE J. of Hydraulic Engineering, Vol. 127 (2001), No. 7, 547-555.
  • 3. Almeida, A. B., Koelle, E.: Fluid Transients in Pipe Networks, CMP Southampton Boston & Elsevier Applied Science, London, New York 1992.
  • 4. Arrington, R. M.: Failure of Water-operated needle valves at Bartlett Dam and Oneida Station Hydroelectric Plant, Proc. of the 3rd ASME/JSME Joint Fluid Engineering Conf., July 18-22 1999, San Francisco, California.
  • 5. Bergant, A., Simpson, A.: Estimating unsteady friction in transient cavitating pipe flow, Proc. of the 2nd Int. Conf. on Water Pipeline Systems,Edinburgh 1994
  • 6. Bonin, C. C.: Water-hammer damage to Oigawa Power Station, ASME J. Engineering for Power, April 1960
  • 7. Brunone, B., Golia, U.M., Greco, M. Some remarks on the momentum equations for fast transients, Int. Meeting on Hydraulic Transients with Column Separation, 9th Round Table, IAHR, Valencia 1991
  • 8. Cartens, M.R., Roller, J.E.: Boundary-shear stress in unsteady turbulent pipe flow, J. of the Hydraulic Division, Proc. of the ASCE, Vol. 85 (1959), No. HY2, 67-81
  • 9. Daily W. L., Hankey W. L., Olive R. W., Jordan J. M. Resistance coefficients for accelerated and decelerated flows through smooth tubes and orifices, Trans. ASME, Vol. 78 (1956), 1007-1077.
  • 10. Holmboe, E. L., Rouleau, W. T.: The effect of viscous shear on transient in liquid lines, J. of Basic Engineering, ASME, Vol. 89 (1967), No. 1, 174-180.
  • 11. Ohmi, M., Kyonen, S., Usui, T.: Numerical analysis of transient turbulent flow in a liquid line, Bulletin of JSME, Vol. 28 (1985), No. 239, 709-806.
  • 12. Safwat, H. H., Van Den Polder, J.: Friction-frequency dependence for oscillatory flows in circular pipe, J. of the Hydraulics Division, ASCE, HY1, Vol. 99 (1973), 1933-1945
  • 13. Trikha, A.K. An efficient method for simulating frequency-dependent friction in transient liquid flow, J. of Fluids Engineering, ASME, Vo. 97 (1975), No.1, 97-105
  • 14. Vardy, A.E., Brown, J.M.: On turbulent unsteady, smooth-pipe friction,Proc. of the 7th Int. Conf. on Pressure Surges-BHR Group, Harrogate 1996
  • 15. Vitkovsky, J., Lambert, M. Simpson, A., Bergant, A.: Advances in unsteady friction modeling in transient pipe flow, Proc. of the 8th Int. Conf. on Pressure Surges-BHR Group, The Hague 2000
  • 16. Wood, D. J., Funk, J. E.: A boundary-layer theory for transients viscous losses in turbulent flow, J. of Basics Eng., ASME, Dec. 1970, 865-873
  • 17. Wylie, E. B., Streeter, V. L.: Fluid Transients in Systems, Prentince-Hall Inc., New Jersey 1993.
  • 18. Zarzycki, Z.: Hydraulic resistance in unsteady liquid flow in closed conduits,Research Reports of Tech. Univ. of Szczecin, No. 516, Szczecin 1994, (in Polish).
  • 19. Zarzycki, Z.: On weighing function for wall shear stress during unsteady turbulent pipe flow, Proc. of the 8th Int. Conf. on Pressure Surges-BHR Group, The Hague, The Netherlands, 2000.
  • 20. Zielke, W.: Frequency-dependent friction in transient pipe flow, J. of Basics Engineering, ASME, Vol. 90 (1968), No. 1, 109-115
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0034-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.