PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shock induced ignitions of oxygen bubbles in cyclohexane under normal conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The shock induced explosion behavior of oxygen bubbles in cyclohexane under normal conditions has been investigated. For the investigations a cylindrical autoclave containing a bubble generator was used. High speed optical and pressure measurements were carried out. In the present work the explosion behavior of bubbles was investigated not only in the first pulsations after the icident shock wave passage, as is the general practice in the literature, but also for many pulsations after it. Two types of bubble ignition were observed. One type of explosion is the well known bubble explosion occuring in the first bubble pulsation after the shock wave impact. The other type was previously unknown. It takes place after many bubble pulsations and has a significantly longer ignition delay. The behavior of a single bubble, which showed the second type of ignition is described. Furthermore it is shown by optical measurements that both types of bubble ignition can take place under the same conditions, i.e. during the same experiment.
Słowa kluczowe
Rocznik
Strony
55--70
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Federal Institute for Material Research and Testing (BAM)
autor
  • Federal Institute for Material Research and Testing (BAM)
autor
  • Technical University of Berlin, D-10623 Berlin, Germany
autor
  • Free University of Berlin, Institute for Chemistry, Fabeckstr. 34 / 36, D- 14195 Berlin, Germany
Bibliografia
  • [1] DECKWER WOLF-DIETER: Bubble column reactors. John Wiley & Sons, Chichester New York, (1992).
  • [2] HASEGAWA T., FUJIWARA T.: Detonation in oxyhydrogen bubbled liquids. Nineteenth Symposium (Int.) on Combustion, The Combustion Institute, Pittsburg PA, (1982) 675-683.
  • [3] SYCHEV A.I.: Shock-wave ignition of liquid-gas bubble systems. Combustion, Explosion and Shock Waves, 21, 2, (1985) 250-253.
  • [4] GÜLHAN A., BEYLICH A.E.: Detonation wave phenomena in bubbled liquid. Proc. 17th Int. Symp. on Shock Tubes & Waves, July 1989, Bethlehem, USA.
  • [5] SYCHEV A.I.: Detonation waves in a liquid-gas bubble system. Combustion, Explosion and Shock Waves, 21, 3, (1985) 365-371.
  • [6] GABRIELLE DUPRE: Explosive properties of energetic systems: application to technological hazards and industrial safety. Invited Lecture (Chair: J. Lee), 17th International Colloquium on the Dynamics of Explosions and Reactive Systems, July 25-30, 1999, Heidelberg, Germany.
  • [7] PINAEV A.V., SYCHEV A.I.: Self-sustaining detonation in liquids with bubbles of explosive gas. Journal of Applied Mechanics and Technical Physics, 1, (1986) 119-123.
  • [8] PINAEV A.V., SYCHEV A.I.: Structure and properties of detonation in a liquid-gas bubble system. Combustion, Explosion and Shock Waves, 22, 3, (1986) 360-368.
  • [9] PINAEV A.V., SYCHEV A.I.: Effects of gas and liquid properties on detonation-wave parameters in liquid-bubble systems. Combustion, Explosion and Shock Waves, 23, 6, (1987) 735-742.
  • [10] BEYLICH Α.E.: Pressure waves in bubbly liquids. In: IUTAM Symp. on Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems, Kyoto, Japan, Eds: K.Morioka and L.van Wijngaarden, pp. 87-106. Kluwer Academic Publishers, Dordrecht, NL (1995).
  • [11] SCARINCI T., BASSIN X., LEE J.H.S., FROST D.L.: Propagation of a reactive wave in a bubbly liquid. In: Takayama, K. (ed.) Proc. 18th Int. Symp. on Shock Waves, Sendai, Japan, Springer-Verlag, Berlin, Volume 1, (1991) 481-484.
  • [12] LEWIS B., VON ELBE G.: Combustion, flames and explosions of gases. Academic Press, Orlado Florida (1987).
  • [13] VILLERMAUX J.: Future challenges for basic research in chemical engineering. Chem. Engng. Sci., 48 14, (1993) 2525-2535.
  • [14] HIERONYMUS H., MITROPETROS K., BENDER J., SEEGER H., SEIFERT S., WENDLER R., PLEWINSKY B.: Heterogene Explosionen. Technische Überwachung, 43, 3, (2002) 39-45 (in German).
  • [15] HOWELL J.A., LESLIE S.W., KENNETH J.: Oxidation of cyclohexane, GB Patent No. 1025752, 14. Apr. 1966.
  • [16] GREENE M.I, SUMMER C., GARTSIDE R.J.: Cyclohexane oxidation, US Patent No. 6,008,415, 28. Dec. 1999.
  • [17] BRUNTON J.H.: Erosion by liquid shock. Proc. 2nd Intl Conf. On Rain Erosion (ed. A. A. Fyall & R. B. King), Royal Aircraft Establishment, UK, (1967) 291.
  • [18] TOMITA Y., SHIMA A.: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, (1986) 535-564.
  • [20] GAVRILENKO T.P.: Transition of combustion into detonation in mixtures based on acetylene. Fizika Goreniya i Vzryva, 16, 5, (1980) 148-149 (in Russian).
  • [19] BRUCKERT B., FROST D., MEIDANI A., CHUE R., BROUILLETTE M.: Dynamics of a single reactive gas bubble. In: Morioka, S. and van Wijngaarden, L. (eds), Proc. IUTAM Symp. on Liquid/Gas and Liquid/Vapour Two-Phase Systems, Kyoto, Japan, (1994) 281-292.
  • [21] HASEGAVA T., UJIWARA T: Propagation velocity and mechanism of bubble detonation. In: Dynamics of Shock Waves, Explosions, and Detonations (Progress in Astronautics and Aeronautics, Vol. 94), American Institute of Aeronautics and Astronautics, (1984) 309-319.
  • [22] KEDRINSKII V.K.: Wave processes and structure dynamics in inhomogeneous media under pulsed loading. Journal of Applied Mechanics and Technical Physics, 38, 4, (1997) 598-624.
  • [23] CRC Handbook of Chemistry and Physics, 81th edition, CRC Press (2000).
  • [24] NOORDZU L., VAN WIJNGAARDEN L.: Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures. J. Fluid Mech. 66, (1974) 115-144.
  • [25] BORISOV A.A., GELFAND B.E., TIMOFEEV E.I.: Shock waves in liquid containing gas bubbles. Int. J. Multiphase Flow, 9, (1983), 531-543.
  • [26] BEYLICH A.E., GÜLHAN A.: On the structure of nonlinear waves in liquids with gas bubbles. Phys Fluids A 2, (1990) 1412.
  • [27] NAKROYAKOV V.E., POKUSAEV B.G.: Wave propagation in gas-liquid media, I.R.Schreiber (ed.), CRC Press (2000).
  • [28] LANDAU L.D.: Fluid mechanics, Butterworth-Heinemann (1987).
  • [29] SYCHEV A.I.: The effect of bubble size on the detonation wave characteristics. Combustion, Explosion, and Shock Waves, 31, 5, (1995) 577-584.
  • [30] FOMIN P.A., MITROPETROS K.S., TARATUTA S.P., HIERONYMUS H.: Modeling of detonation wave initiation, limits and hazard of chemically active bubbles. In: Internal Flows (Proc. Of The 5th Int. Symp. on Experimental and Computational Acrothermodynamics of Internal Flows, Gdansk, Poland, 2001. September 4-7), Vol. 2, Piotr Doerffer (Ed.), IFFM Publishers, (2001) 925-933.
  • [31] FOMIN P.A., MITROPETROS K., HIERONYMUS H.: Bubble ignition in chemically active heterogensous systems. In: Advances in Confined Detonations. G.D. Roy, S.M. Frolov et al. (eds.), Torus Press, Moscow, (2002) 167-170.
  • [32] NAUDE & ELLIS: On the mechanism of cavitation damage by non-hemispherical cavities collapsing in contact with a solid boundary. Trans. ASME D: J. Basic Engng, 83, (1961) 648-656.
  • [33] LAUTERBORN W.: Liquid jets from cavitation bubble collapse. Proc. 5nd Intl Conf. On Erosion by Liquid and Solid Impact (ed. J. E. Field), Cavendish Lab., Cambridge, UK, paper 58 (1979).
  • [34] FUJIWARA T., HASEGAWA T: Shock propagation in liquid-gas media. Proceedings of 13th International Symposium on shock tubes and Waves, (1981) 724-732.
  • [35] FUJIWARA T., HASEGAWA T. Shock wave deformation of a nonspherical gas bubble in liquids. Proceedings of 13th International Symposium on Space Technology and science, (1982) 583-591.
  • [36] DEAR J.P., FIELD, J.E.: A study of the collapse of arrays of cavities. J. Fluid Mech., 190, (1988) 409-425.
  • [37] NAKROYAKOV V.E., DONSTOV V.E.: Pressure waves interaction in a liquid with gas bubbles and bubble fragmentation. In: Proc. Int. Symp. Two-Phase Flow Modeling and Experimentation, Vol. 2, Rome, Italy, (1995) 951-958.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0019-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.