PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Piezoelectric effects in biological tissues

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zjawisko piezoelektryczne w biologii tkanek
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to analyze different contibutions and differents points of view concerning the meaning of the piezoelectric effect in the bone. It is now obvious that this effect is overhelming in dry bone. In wet bone more important are streaming potentials.
PL
Analizujemy różne prace i różne punkty widzenia dotyczące zjawiska piezoelektrycznego w kości i jego znaczenia dla biologii tej tkanki. Zjawisko to obserwowane wyraźnie w kości suchej, odgrywa według ostatnich badań mniejszą niż sądzono początkowo rolę w procesach adaptacyjnych kości żywej. Tym niemniej własności piezoelektryczne są istotne dla różnych procesów biologicznych.
Słowa kluczowe
Rocznik
Strony
723--759
Opis fizyczny
Bibliogr. 163 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research, Warsaw
autor
  • Institute of Fundamental Technological Research, Warsaw
Bibliografia
  • 1. ANDERSON J.C., ERIKSSON C, 1968, Electrical properties of wet collagen, Nature, 218, 166-68
  • 2. ANDERSON J.C., ERIKSSON C, 1970, Piezoelectric properties of dry and wet bone, Nature, 227, 491-92
  • 3. ASCENZI A., BENVENUTI A., 1977, Evidence of a state of initial stress in osteonic lamellae, J. Biomechanics, 10, 447-53
  • 4. ASHERO G., GIZDULICH P., MANGO F., 1999, Statistical characterization of piezoelectric coefficient cfo in cow bone, J. Biomechanics, 32, 573-77
  • 5. ASTBURY, W.T., 1933, Some problems in the X-ray analysis of the structure of animal hairs and other protein fibres, Trans. Faraday Soc, 29, 193-211
  • 6. ATHENSTAEDT H., 1970, Permanent longitudinal electric polarization and pyroclectric behavior of the collagenous structures and nervous tissue in man and other verterbrates, Nature, 228, 830-34
  • 7. AVDEEV Yu.A., REGIRER S.A., 1979, Mathematical model of bone tissue as a poroelastic piezoelectric material, Mekh. Kompozitnykh Materyalou, No. 5, 851-55, in Russian
  • 8. BASSET C.A.L., 1964, Bone biodynamics, ed. by H.M. Frost, Little & Brown, Boston, MA
  • 9. BASSET C.A.L., 1965, Electrical effects in bone, Scient. Am., 213, 18-25
  • 10. BASSETT C.A.L., 1968, Biological significance of piezoelectricity, Cale. Tiss. Res., 1, 252-272
  • 11. BASSETT C.A.L., 1971, Biophysical principles affecting bone structure, in: The biochemistry and physiology of bone, Vol. 3, 1-76, ed. by G.H. Bourne, 2nd Edition, Academic Press, New York
  • 12. BASSET C.A.L., BECKER R.O., 1962, Gencration of electric potentials by bone in response to mechanical stress, Science, 137, 1063-1064
  • 13. BASSET C.A.L., PAWLUK R.J., BECKER R.O., 1964, Effects of electric currents on bone in vivo, Nature, 204, 652-654
  • 14. BAZHENOV V.A., 1961, Piezoelectric properties of wood, Consultants Bureau, New York, N.Y.
  • 15. BAZHENOV V.A., KONSTANTINOVA V.P., 1950, P'iezoelektricheskiye svoystva drevesiny, Doklady Akad. Nauk SSSR, 71, 283-286
  • 16. BEAN B.P., 1989, Classes of calcium channels in vertebrate cells, Ann. Rev. Physioi, 51, 367-384
  • 17. BECKER R.O., BASSET C.A.L., BACHMAN C.H., 1964, Bioelectrical factors controlling bone structure, Bone biodynamics, ed. by H.M. Frost, Little Brown, Boston, 209-232
  • 18. BERRIDGE M.J., 1993, Inositol trisphosphate and calcium signalling, Nature, 361, 315-325
  • 19. BHAGAVANTAM S., 1966, Crystal symmetry and physical properties, Academic Press, London
  • 20. BIELSKI W., TELEGA J.J., 1997, Effective properties of geomaterials: rocks and porous media, Publ. Institute of Geophysics Polish Academy of Sciences, A-26, 285, Warsaw
  • 21. BIOT M.A., 1955, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 182-185
  • 22. BLACK J., KOROSTOFF E., 1974, Strain-related potentials in living bone, N. Y. Acad. Sci, 238, 95-120
  • 23. BOURNE G.H., 1971, Phosphate and calcification, in: The biochemistry and physiology of bone, Vol. 2, ed. by G.H. Bourne, Academic Press, New York, 79-120
  • 24. BRADIN M., BAIRSTOW A.G., BEIDER I., RITTER B.G., 1966, Electrical and piezoclectrical properties of dental hard tissues, Nature, 212, 1565-1566
  • 25. BRADY M.M., SYMONS S.A., STUCHLY S.S., 1981, Dielectric behavior of selected animal tissues in vitro at freąuencies from 2 to 4 GHz, IEEE Trans. Biomed. Engng., BME-28, 305-307
  • 26. BRIGHTON C.T., BLACK J., POLLACK S.R., 1979, Electrical properties ofbone and cartilage, Grune and Stratton, New York
  • 27. BRIGHTON C.T., FISHER J.R. JR, LEVINE S.E., CORSETTI J.R., REILLY T., LANDSMAN A.S., WILLIAMS J.L., THIBAULT L.R., 1996, The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. A beginning to an understanding of Wolff's Law, J. Bone Joint Surg. Am 78, 1337-47
  • 28. BRIGHTON C.T., SCIIAFFER J.L., SHAPIRO D.B., TANG J.J.S., CLARK CC, 1991, Proliferation and macromolecular synthesis by rat calvarial bone cells grown in various oxygen tension, J. Orthop. Res., 9, 847-854
  • 29. BRIGHTON C.T., SENNETT B.J., FARMER J.C, ET AL., 1992, The inositol phosphate pathway as a mediator in the celi proliferative response of rat calvarial bone cells to cyclical biaxial mechanical strain, J. Orthop. Res., 10, 385-393
  • 30. BUR A.J., 1975, Piezoelectric measurements on bone as a function of temperature and humidity, Buli. Am. Phys. Soc, 20, 483
  • 31. BUR A. J., 1976, Measurements of the dynamie piezoelectric properties of bone as a function of temperature and humidity, J. Biomechanics, 9, 495-507
  • 32. BUSCH S., DOLHAINE H., DUCHESNE A., HEINZ S., HOCHREIN O., LAERI F., PODEBRAD O., VIETZE U., WEILAND T., KNIEP R., 1999, Biomimetic morphogenesis of fiuorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denaturated collagen, Eur. J. Inorg. Chem., 10, 1643-1653
  • 33. CADY W.G., Piezoelectricity, Dover, New York 1964
  • 34. CHAKKALAKAL D.A., JOHNSON M.W., HARPER R.A., KATZ J.L., 1980, Dielectric properties of fluid saturated bone, IEEE Trans. Biomed. Engng., BME-27, 95-100
  • 35. COCHRAN G.V.B., PAWLUK R.J., BASSETT C.A.L., 1968, Electromechanical characteristics of bone under physiologic moisture conditions, Clin. Orthop., 58, 249-270
  • 36. COLE K.S., Li CH.-L., BAK A.F., 1969, Electrical analogues for tissues, Experimental Neurology, 24, 459-473
  • 37. COOK H.F., 1941, The dielectric behaviour of some types of human tissue at microwave frequencies, Brit. J. Appl. Phys., 2, 295-304
  • 38. CORSETTI J.R., LEVINE S.E., POLLACK S.R., BRIGHTON C.T., 1992, En-hanced proliferation of cultured bone cells by a capacitevely coupled electric field, Trans. Bioelec. Repair and Growth Soc, 11, 36
  • 39. CowiN S.C. (EDIT.), 2001, Bone Mechanics Handbook, CRC Press, Boca Raton
  • 40. COWIN S.C, MOSS-SALENTIJN L., MOSS M.L., 1991, Candidates for the me-chanosensory system in bone, J. Biomech. Engng., 113, 191-197
  • 41. CROLET J.M., AOUBIZA B., MEUNIER A., 1993, Compact bone: numerical simulation of mechanical characteristics, J. Biomechanics, 26, 677-687
  • 26. BRIGHTON C.T., BLACK J., POLLACK S.R., 1979, Electrical properties ofbone and cartilage, Grune and Stratton, New York
  • 27. BRIGHTON C.T., FISHER J.R. JR, LEVINE S.E., CORSETTI J.R., REILLY T., LANDSMAN A.S., WILLIAMS J.L., THIBAULT L.R., 1996, The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. A beginning to an understanding of Wolff's Law, J. Bone Joint Surg. Am 78, 1337-47
  • 28. BRIGHTON C.T., SCIIAFFER J.L., SHAPIRO D.B., TANG J.J.S., CLARK CC, 1991, Proliferation and macromolecular synthesis by rat calvarial bone cells grown in various oxygen tension, J. Orthop. Res., 9, 847-854
  • 29. BRIGHTON C.T., SENNETT B.J., FARMER J.C, ET AL., 1992, The inositol phosphate pathway as a mediator in the celi proliferative response of rat calvarial bone cells to cyclical biaxial mechanical strain, J. Orthop. Res., 10, 385-393
  • 30. BUR A.J., 1975, Piezoelectric measurements on bone as a function of temperature and humidity, Buli. Am. Phys. Soc, 20, 483
  • 31. BUR A. J., 1976, Measurements of the dynamie piezoelectric properties of bone as a function of temperature and humidity, J. Biomechanics, 9, 495-507
  • 32. BUSCH S., DOLHAINE H., DUCHESNE A., HEINZ S., HOCHREIN O., LAERI F., PODEBRAD O., VIETZE U., WEILAND T., KNIEP R., 1999, Biomimetic morphogenesis of fiuorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denaturated collagen, Eur. J. Inorg. Chem., 10, 1643-1653
  • 33. CADY W.G., Piezoelectricity, Dover, New York 1964
  • 34. CHAKKALAKAL D.A., JOHNSON M.W., HARPER R.A., KATZ J.L., 1980, Dielectric properties of fluid saturated bone, IEEE Trans. Biomed. Engng., BME-27, 95-100
  • 35. COCHRAN G.V.B., PAWLUK R.J., BASSETT C.A.L., 1968, Electromechanical characteristics of bone under physiologic moisture conditions, Clin. Orthop., 58, 249-270
  • 36. COLE K.S., Li CH.-L., BAK A.F., 1969, Electrical analogues for tissues, Experimental Neurology, 24, 459-473
  • 37. COOK H.F., 1941, The dielectric behaviour of some types of human tissue at microwave frequencies, Brit. J. Appl. Phys., 2, 295-304
  • 38. CORSETTI J.R., LEVINE S.E., POLLACK S.R., BRIGHTON C.T., 1992, Enhanced proliferation of cultured bone cells by a capacitevely coupled electric field, Trans. Bioelec. Repair and Growth Soc, 11, 36
  • 39. CowiN S.C. (EDIT.), 2001, Bone Mechanics Handbook, CRC Press, Boca Raton
  • 40. COWIN S.C, MOSS-SALENTIJN L., MOSS M.L., 1991, Candidates for the mechanosensory system in bone, J. Biomech. Engng., 113, 191-197
  • 41. CROLET J.M., AOUBIZA B., MEUNIER A., 1993, Compact bone: numerical simulation of mechanical characteristics, J. Biomechanics, 26, 677-687
  • 42. DAINORA J., 1964, Piezoelectric properties of bone, M.Sc. thesis, West Virginia University, Morgantown, W.V.
  • 43. DATE M., 1972, Piezoelectric constant in dispersed systems, Rept. Progr. Polymer Phys. Japan, 15, 385-387
  • 44. DAVIDSON R.M., TATAKIS D.W., AUERBACH A.L., 1990, Multiple forms of mechanosensitivc ion channels in osteoblast-like celi, Pfliigers Arch., 416, 646-651
  • 45. DAWSON T.W., STUCHLY M.A., CAPUTA K., SASTRA A., SHEPARD R.B., KAVET R., 2000, Pacemaker interference and low-frequency electric induction in humans by external fields and electrodes, IEEE Trans. Biomed. Eng., 47, 1211-1218
  • 46. DEMIRAY H., GUZELSU N., 1977, A mixturc model for wet bones - I theory, Int. J. Engng Sci, 15, 707-718
  • 47. ENCYCLOPAEDIA BRITANNICA, 1959, Vol. 3, William Benton Publisher, Chicago-London-Toronto, item: bone
  • 48. ERIKSSON C., 1974, Streaming potentials and other water - dependent effects in mineralized tissue, N.Y. Acad. Sci, 238, 321-338
  • 49. ERIKSSON C., 1976, Electrical properties of bone, in: The biochemistry and physiology of bone, Vol. 4, ed. by G.H. Bourne, Academic Press, New York, 329-384 '
  • 50. FERRIER J., ROSS S.M., KANEHISA J., AUBIN J.E., 1986, Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field, J. Celi. Physioi, 129, 283-288
  • 51. FREEMAN J.R., 1967, Dielectric properties of mineralized tissues, Trans. New York Acad. Sci. division of phys. scies, 29, 623-633
  • 52. FROST H.M., 1973, Bone remodeling its relationship to metabolic bone dise-ases, Orthopaedic lectures, Vol. III, Charles C. Thomas, Springfield, 111
  • 53. FUKADA E., 1968a, Mechanical deformation and electrical polarization in biological substances, Biorheology, 5, 199-208
  • 54. FUKADA E., 1968b, Piezoelectricity as a fundamerital property of wood, Biorheology, 5, 199-208
  • 55. FUKADA E., 1968C, Piezoelectricity in polymers and biological materials, Ultrasonics, 6, 229-234
  • 56. FUKADA E., 1974, Piezoelectric properties of organie polymers, N.Y. Acad. Sci, 238, 7-25
  • 57. FUKADA E., HARA K., 1969, Piezoelectric effect in blood vessel walls, J. Phys. Soc. Japan, 26, 777-780
  • 58. FUKADA E., TAKASHITA S., 1971, Piezoelectric constant in oriented 0 form polypeptides, Jap. J. Appl. Phys., 10, 722-726
  • 59. FUKADA E., YASUDA I., 1957, On the piezoelectric effect of bone, J. Phys. Soc. Japan, 12, 1158-1162
  • 60 FUKADA E., YASUDA I., 1959, Progres in Polymer Physics in Japan, 2, 101
  • 61. FUKADA E., YASUDA I., 1964, Piezoelectric effects in collagen, Jap. J. Appl. Physics, 3, 117-121
  • 62. GEIGER R.V., BERK B.C., ALEXANDER R.W., NEREM R.M., 1992, Flow-induced calcium transients in single endothelial cells; spatial and tcmporal ana-lysis, Am. J. Physioi, 262, C1411-C1417
  • 63. GJELSVIK A., 1973, Bone remodelłing and piezoelectricity - I, II, J. Biomecha-nics, 6, 69-77, 187-193
  • 64. GOES S.C., FIGUEIRO S.D., DE PAIVA J.A.C., SOMBRA A.S.B., 1999, Piezoelectric and dielectric properties of collagen films, Phys. Status Solidi A, 176, 1077-83
  • 65. GUNDJIAN A. A., CHEN H.L., 1974, Standardization and interpretation of the electromechanical properties of bone, IEEE Trans. Biomed. Engng., BME-21, 177-182
  • 66. GRODZINSKY A.J., 1983, Ełectrochemical and physicochemical properties of connective tissue, CRC Critical Reviews in Biomedical Engineering, 9, 133-199
  • 67. GROSS D., WILLIAMS W.S., 1982, Streaming potential and the electromechanical response of physiologically moist bone, J. Biornechanics, 15, 277-295
  • 68. GRYNKIEWICZ R.M., POENIE M., TSIEN R.Y., 1985, Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis, J. Biol. Chem., 280, 6, 3440-3450
  • 69. GiJZELSU N., 1978, A piezoelectric model for dry bone tissue, J. Biornechanics, 11, 257-267
  • 70. GUZELSU N., DEMIRAY H., 1979, Recent advances Electromechanical properties and related models of bone tissues A review, Int. J. Engng Sci., 17, 813-851
  • 71. GUZELSU N., SAHA S., 1984, Electro-mechanical behavior of wet bone - part I: theory, J. Biomech. Engng., 106, 249-261
  • 72. GUZELSU N., SAHA S., 1984, Electro-mechanical behavior of wet bone - part II: wave propagation, J. Biomech. Engng., 106, 262-271
  • 73. HE Y., GRINELLI F., 1994, Stress relaxation of fibroblasts activates a cyclic AMP signaling pathway, J. Celi Biol, 126, 2, 457-464
  • 74. HERRING G.M., 1971, in: The biochemistry and physiology of bone, Vol. 1, ed. by G.H. Bourne, pp. 127-189, 2nd cdition, Academic Press, New York
  • 75. HILCZER B., MAŁECKI J., 1986, Electrets, PWN Warszawa and Elsevier Amsterdam
  • 76. HOLLAND R., 1967, Representation od dielectric, elastic and piezoelectric losses by complex coefficients, IEEE Trans. Sonics Ultrason., SU-14, 18-20
  • 77. HOLMES D.J.S., 1979, Quasi-hexagonal molecular packing in collagen fibrils, Nature, 282, 878-880
  • 78. HOUSE S., 2000, Applied electric field in the treatment of bone fractures, last modified: October 23, 2000, http://www.wpi.edu/ gro-vers/PH3301/emtharpy/SallyHouse/SallyHouse.html
  • 79. HUNG C.T., ALLEN F.D., POLLACK S.R., BRIGHTON C.T., 1996a, What is the role of the convective current density in the real-timc calcium response of cultured bone cells to fluid flow?, J. Biomechanics, 29, 1403-1409
  • 80. HUNG C.T., ALLEN F.D., POLLACK S.R., BRIGHTON C.T., 1996b, Intracellural Ca2+ stores and extracellular Ca2+ are reąuired in the real-time Ca2+ response of bone cells experiencing fluid flow, J. Biomechanics, 29, 1411-1417
  • 81. HUNG C.T., POLLACK S.R., REILLY T.M., BRIGHTON C.T., 1995, Real-time calcium response of cultured bone cells to fluid flows, Clin. Orthop., 313, 256-269
  • 82. HUNTER R.J., 1981, Charge and potential distribution aat intefaces, in: Zeta potential in colloid science - principles and applications, Academic Press, London-New York-Orlando, pp. 11-58
  • 83. JENDRUCKO R.J., CHENG C.J., HYMAN W.A., 1977, The distribution of induced electrical acitivity in bent long bone, J. Biomechanics, 10, 493-503
  • 84. JOHNSON M.W., KATZ J.L., 1987, Electromechanical effects in bone, in: Hand-book of Bioengineering, Edit. R. Skalak and S. Chien, Mc Graw Hill, New York, 3.1-3.11
  • 85. JOHNSON M.W., CHAKKALAKAL D.A., HARPER R.A., KATZ J.L., 1980a, Comparison of the electromechanical effects in wet and dry bone, J. Biomecha¬nics, 13, 437-442
  • 86. JOHNSON M.W., WILLIAMS W.S., GROSS D., 1980b, Ceramic models for piezoelectricity in dry bone, J. Biomechanics, 13, 565-573
  • 87. JONES D.B., BINGMANN D., 1991, How do osteoblasts respond to mechanical stimulation?, Cells materials, 1, 329-340
  • 88. KATZ J.L., 1971, Hard tissue as a compositc materiał. I. Bounds on the elastic behavior, J. Biomechanics. 4, 455-473
  • 89. KIETIS B.P., LINGĘ D., PAKALNIS S. and VALKUNAS L., 1998, Piezoelectric model of energy conversion in bacteriorhodopsin, Lith. Phys. J., 38, 270-5. Translation of: Liet. Fiz. Z., 38, 313-19 (1998)
  • 90. KOROSTOFF E., 1977, Stress generated potentials in bone: relationship to pie-zoelectricity of collagen, J. Biomechanics, 10, 41-44
  • 91. Korostoff E., 1979, Linear piezoelectric model for characterizing stress generated potentials in bone, J. Biomechanics, 12, 335-347
  • 92. KOSTERICH J.D., FOSTER K.R., POLLACK S.R., 1984, Dielectric properties of fluid saturated bone: effect of variation in conductivity of immersion fluid, IEEE Trans. Biomed. Engng., 31, 369-374
  • 93. KUDRIAVTSEV B.A., 1978, Mechanics of piezoelectric materials, in: Rogi Nauki i Tekhniki. Mekhanika tverdogo deformiruemogo tela, 14, 5-66, in Russian
  • 94. KUMMER B.K.F., 1972, in: Biomechanics, ed. by Y.C. Fung, N. Perrone and M. Anliker, Prentice-Hall, New York, 237-271
  • 95. LAKES R.S., HARPER P.A., KATZ J.L., 1977, Dielectric relaxation in cortical bone, ./. Appl. Phys., 48, 808-811
  • 96. LANDAU L.D., LlFSHiTS E.M., 1982, Elektrodynamics of continuous media, Nauka, Moskva, in Russian
  • 97. LANG S.B., 1966, Pyroelectric effect in bone and tendon, Nature, 212, 704-705
  • 98. LANG S.B., 1969, Thermal expansion coefficients and the primary and secondary pyroelectric coefficients of animal bone, Nature, 224, 798-799
  • 99. LANYON L.E., 1992, Osteocytes, strain detcction, bone modeling and rernodcling, Calcif. Tissue Int., 53, Suppl. 1, S102-S107
  • 100. LEKSZYCKI T., TELEGA J.J., 2002, Progress in functional adaptation of tissues and remodclling. Part I and II, Eng. Trans., in press
  • 101. LIBOFF A.R., FURST M., 1974, Pyroelectric effects in collagenous structures, N.Y. Acad. Sci., 238, 26-35
  • 102. LIBOFF A.R., SHAMOS M.H., 1973, Solid state physics of bone, in: Biological mineralization, ed. by I. Zipkin, Wiley, New York, Chapter 14, 335-395
  • 103. LIBOFF A.R., SHAMOS M.H., DEVIRGILIO W., 1971, The piezoelectric moduli of bone, 15th Ann. Biophys. Soc. Meet., New Orleans
  • 104. LORICH D.G., BRIGHTONE C.T., CORSETTI J.R., POLLACK S.R., 1993, Role of prostaglandin E2 on bone celi proliferation in response to a capacitevely coupled electric field, Trans. Orthop. Res. Soc, 18, 179
  • 105. MARINO A.A., BECKER R.O., 1975, Piezoelectricity in hydrated bone and tendon, Nature, 253, 627-628
  • 106. MARINO A.A., ROSSON J., GONZALEZ E., JONES L., FUKADA E., 1988, Quasistatic charge interaction in bone, J. Electrostatics, 21, 347-360
  • 107. MAROUDAS A., 1968, Physicochemical propcrties of cartilage in the light of ion cxchange theory, Biophysical J., 8, 575-594
  • 108. MARTIN A.J.P., 1941, Triboelectricity in wood and hair, Proc. Phys. Soc, 53, 186-189
  • 109. MCELHANEY J.H., 1967, (1968) The charge distribution of the human femur due to load, J. Bone and Joint Surgery, 49-A, 1561-1571
  • 110. MCLEAN F.C., 1955, Bone, Scientific American, 192, 2, 84-91
  • 111. MCLEOD K.J., DONAHUE H.J., FONTAINE M.A., RUBIN C.T., 1993, Celi density effects on the interaction of electric fields with cells in vitro, in: Electricity and magnetism in biology and medicine, ed. by M. Blank, San Francisco Press, San Francisco, pp. 291-294
  • 112. MICHEL CC, 1988, Capillary permeability and how it may change, J. Physioi, 404, 1-29
  • 113. MINDLIN R.D., 1961, On the eąuations of motion of piezoelectric crystals, in: Problems of continuum mechanics, ed. by J.R.M. Radok, Society for Industrial and Applied Mathematics, Philadelphia, pp. 282-290
  • 114. PELTIER, L.F., 1981, A brief historical note on the use of electricity in the treatment of fractures, Clin. Orthop., 161, Nov.-Dec. 4-7
  • 115. PETHIG R., 1979, Dielectric and electronic properties of biological materials, J. Wiley, Chichester
  • 116. PETROV N., 1975, Electro-mechanical intcractions in physiologic wet bones, Bulgarian Academy of Sciences, Biomechanics, 2, 31-42
  • 117. PFEIFFER B.H., 1977a, Local piezoelectric połarization of human cortical bone as a function of stress freąuency, J. Biomechanics, 10, 53-57
  • 118. PFEIFFER B.H., 1977b, A model to estimate the piezoelectric połarization in the ostcon system, J. Biomechanics, 10, 487-492
  • 119. PIEKARSKI K., 1973, Analysis of bone as a composite materiał, Int. J. Engng Sci, 11, 557-565
  • 120. PIEŃKOWSKI D., POLLACK S.R., 1983, The origin of stress-generated potentials in fluid saturatcd bone, J. Orthop. Res., 1, 30-41
  • 121. POLLACK S.R., PETROV N., SALZSTEIN R., BRANKOV G., BLAGOEVA R., 1984, An anatomical model for streaming potentials in osteons, J. Biomechanics, 17, 627-636
  • 122. RAMACHANDRAN G.N., KARTHA G., 1954, Structure of collagan, Nature, 174, 269-270
  • 123. REGLING G., 2000, Conception of a bioelectromagnetic signal system via the collagen fibril network; Biochemical conclusions and underlying coherent rae-chanism. I. Solid state effects and hierachicał bioelectrical regulation, Electro-and Magnetobiology, 19, 149-161II. Encrgetic aspects, acid and neutral proteases, and the phenomenon of coherence, ibid, 163-175
  • 124. REICH K.M., FRANGOS J.A., 1993, Protein kinase C mediates flow-induced prostaglandin E—2 production in osteoblasts, Calcif. Tissue Int., 52, 62-66
  • 125. REICH K.M., GAY CV., FRANGOS J.A., 1990, Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production, J. Celi Physioi, 143, 100-104
  • 126. REINISH G.B., NOWICK A.S., 1975, Piezoelectric properties of bone as functions of moisturc content, Nature, 253, 626-627
  • 127. RICE J.R., CLEARY M.P., 1976, Some basie stress diffusion solutions for fluid saturated elastie porous media with comprcssible constituents, Rev. Geophys. Space Phys., 14, 227-241
  • 128. RUDNICKI J.W., 1985, Effect of porc fluid diffusion on deformation and failure of rock, Mechanics of Geomaterials, ed. by Z. Bażant, John Wiley and Sons, 315-347
  • 129. SADOSHIMA J.-I., TAKAHASHI T., JAHN L., IZUMO S., 1992, Role of mechano-sensitivc ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-carly genc expression and hypcrtrophy of cardiac myocytes, Proc. Natl. Acad. Sci, 89, 9905-9909
  • 130. SALZSTEIN R.A., POLLACK S.R., 1987, Electromechanical potential in cortical bone II. Experimental analysis, J. Biomechanics, 20, 271-280
  • 131. SALZSTEIN R.A., POLLACK S.R., MAK A.F.T., PETROV N., 1987, Electromechanical potentials in cortical bone - I. A continuum approach, J. Biome¬chanics, 20, 261-270
  • 132. SASAKI N., ODAJIMA S., 1996, Stress-strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction techniqc, J. Biome¬chanics, 29, 655-658
  • 133. SATCHER R.L. JR, BUSSOLARI S.R., GIMBRONE M.A. JR, DEWEY F.C. JR, 1992, The distribution of forces on model endothelium using computational fluid dynamics, J. Biomech. Engng., 114, 309-316
  • 134. SCHWAN H.P., 1957, Electrical properties of tissue and celi suspensions, in: Advances in Biological and Medical Physics, vol. 5, Academic, New York, 147-209
  • 135. SCOTT G.C., KOROSTOFF E., 1990, Oscillatory and step response: electrome-chanicl phenomena in human and bovine bone, J. Biomechanics, 23, 127-143
  • 136. SHAMOS M.H., LAVINE L.S., 1964, Physical bases for bioelectric effect in mineralized tissues, Clinical Orthopaedics and Related Research, 35, 177-188
  • 137. SHAMOS M.H., LAVINE L.S., SHAMOS M.I., 1963, Piezoelectric effect in bone, Nature, 197, 81-81
  • 138. SHUBNIKOV A.V., 1946, Piezoelectric teztures, Izd. AN SSSR, in Russian
  • 139. SHUBNIKOV A.V., BELOV N.V., 1964, Coloured symmetry, Pergamon Press
  • 140. SILLARS R.W., 1937, The properties of a dielectric containing semi-conducting particles of various shapes, J. Instn. Electr. Engrs, London, 80, 378-394
  • 141. SPIRT A.A., POLLACK S.R., 1993, Agc-rclated change in the zeta potential of bone and its influence upon endogenous electrical field strength, in: Electricity and magnetism in biology and Medicine, ed. by M. Blank, San Francisco Press, San Francisco, 693-697
  • 142. STUCHLY M.A., STUCHLY S.S., 1980, Dielectric properties of biological substances, tabulated, J. Microwave Power, 15, 19-26
  • 143. TELEGA J.J., 1991, Piezoelectricity and homogenization. Application to bio-mechanics, in: Continuum Models and Discrete Systems, vol. 2, ed. by G.A. Maugin, 220-229, Longman, Essex
  • 144. TELEGA J.J., WOJNAR R., 1996, Flow of conductive fiuids through poroelastic media with piezoelectric properties, Fluid-Structure Interactions in Biomechanics, 10-13th April, Imperial College, London SW7 2AZ UK
  • 145. TELEGA J.J., WOJNAR R., 1998, Flow of conductive fluids through poroelastic media with piezoelectric properties, J. Theor. Appl. Mech., 36, 775-794
  • 146. TELEGA J.J., WOJNAR R., 2000, Flow of electrolyte through porous piezoelectric medium: macroscopic eąuations, C. R. Acad. Sci., Paris, 328, Serie Ilb, 225-30
  • 147. TSAY R.-Y., WEINBAUM S., 1991, Viscous flow in a channel with periodic cross-bridging fibers: exact solution and Brinkman approximation, J. Fluid Mech., 226, 125-148
  • 148. UKLEJEWSKI R., 1993, Electromechanical potentials in a fluid-filled cortical bone: initial stress state in osteonic lamellae, piezoelectricity and streaming potential roles - a theory, Biocybernetics and Biomedical Engng., 13, 97-112
  • 149. UKLEJEWSKI R., 1994, Initial piezoelectric polarization of cortical bone matrix as a determinant of. the electrokinetic potential Zeta of that bone osteonic lamella as mechanoelectret, J. Biomechanics, 27, 991-992
  • 150. WARNER M., TERENTEV E.M., 1999, The coupling of chiral chains to mechanical distortions in elastomers, Proc. R. Soc. hond., A 455, 3629-44
  • 151. WEINBAUM S., COWIN S.C., ZENG YU, 1994, A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, J. Biome¬chanics, 27, 339-360
  • 152. WILKINSON S.J., HUKINS D.W.L., 1999, Determination of collagen fibril structure and orientation in connective tissues by X-ray diffraction, Radiat. Phys. Chem., 56, 197-204
  • 153. WILLIAMS W.S., 1974, Sources of piezoelectricity in tendon and bone, CRC Critical Reuiews in Bioengineering, 95-118
  • 154. WILLIAMS W.S., BREGER L., 1974, Analysis of stress distribution and piezoelectric response in cantilever bcnding of bone and tendon, Ann. N. Y. Acad. Sci., 238, 121-130
  • 155. WILLIAMS W.S., BREGER L., 1975, Piezoelectricity in tendon and bone, J. Biomechanics, 8, 1-6
  • 156. WILLIAMS W.S., BREGER L., JOHNSON M., 1975, Ceramic models for study of piezoelectricity in solids, J. Am. Ceram. Soc, 58, 415-417
  • 157. WILLIAMS J.L., IANNOTI J.P., HAM A., BLEUIT J., CHEN J.H., 1994, Effects of fluid shear stress on bone cells, Biorheology, 31, 161-168
  • 158. WOJNAR R., TELEGA J.J., 1997, Electrokinetics in dielectric porous media, Problems of environmental and damage mechanics, Proceedings of the XXXI Polish Solid Mechanics Conference, September 9-14, 1996, ed, by W. Kosiński, R. de Boer, D. Gross, IPPT PAN, Warszawa
  • 159. WOLFF J., 1892, Das Gesetz der Transformationen der Knochen, Hirschwald, Berlin
  • 160. YASUDA I., NOGUCHI K,, SATA T., 1955, Dynamie callus and electric callus, The Journal of Bone and Joint Surgery, 37A, 1292-1293
  • 161. YOON H.S., KATZ J.L., 1976, Ultrasonic wave propagation in human cortical bone - III. Piezoelectric contribution, J. Biomechanics, 9, 537-540
  • 162. ZHANG D.S., WEINBAUM S., COWIN S.C., 1998, On the calculation of bone pore water pressure due to mechanical loading, Int. J. Solids Structures, 35, 4981-4997
  • 163. ZHELUDEV I.S., 1974, Piezoelectricity in textured media, Solid State Physics, 29, 315-359
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0014-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.