PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On nonlocal gradient model of inelastic heterogeneous media

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nielokalny model gradientowy niesprężystych ośrodków heterogenicznych
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to investigate the influence of nonlocality on the physical and material field equations of heterogeneous media. Taking into account that plastic deformations in metals or damage in brittle and ductile materials are governed by physical mechanisms observed on levels with different lengthscales, we introduce a 6-dimensional kinematical concept with two locally defined vectors to model the material behaviour on a macro- and meso- or microlevel. Using a variational procedure the physical and material balance laws, boundary and transversality conditions are derived for macrp- and microdeformations of heterogeneous media. The disspation inquality including relaxation terms for transport processes is presented. The constitutive equations are formulated with macro- and microstrain measures, their gradients and time rates, and the anisotropy tensor as arguments, where the latter can be considered as a coupling measure between the deformed macrostates with compatible microstates. The model presented in this paper delivers a framework, which enables one to derive various nonlocal and gradient theories by introducing simplifying assumptions. As the special case a solid-void model is considered.
PL
Celem pracy jest zbadanie wpływu nielokalności na fizyczne i materialne równania pola ośrodków heterogenicznych. Biorąc pod uwagę, że plastyczna deformacja w metalach lub zniszczenie w kruchych i ciągliwych materiałach rządzone są przez fizyczne mechanizmy na różnych poziomach skali, wprowadzono 6-wymiarową strukturę z dwoma lokalnie zdefiniowanymi wektorami do modelowania materialnego zachowania ośrodka na poziomie makro- i mezo- lub mikroskali. Wykorzystując wariacyjną procedurę otrzymano fizyczne i materialne prawa bilansu, warunki brzegowe i transwersalność dla makro- i mikrodeformacji ośrodków heterogenicznych. Przedstawiona nierówność dyssypacyjna zawiera człony relaksacyjne procesów transportu. Sformułowane równania konstytutywne wyrażono przy pomocy miar makro- i mikroodkształcenia, ich gradientów i przyrostów oraz tensora anizotropii, gdzie ostatni argument może być traktowany jako miara sprzężenia pomiędzy odkształconymi makrostanami i kompatybilnymi mikrostanami. Przedstawiony w pracy model dostarcza podstaw, które poprzez wprowadzenie uproszczających założeń umożliwiają otrzymanie różnych postaci nielokalnych i gradientowych teorii. Jako przypadek szczególny rozpatrzono model typu ciało stałe-pustka.
Rocznik
Strony
205--234
Opis fizyczny
Bibliogr. 65 poz., rys.
Twórcy
autor
  • Lehrstuhl fur Allgemeine Mechanik, Ruhr-Universitat Bochum, Bochum, Germany
autor
  • Institułe of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk
Bibliografia
  • 1. BARENBLATT G.I., 1962, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech, 7, 55
  • 2. BAŻANT Z.P., 1991, Why continuous camage is conlocal: micromechanics arguments, Int. J. Engng Mech., 117, 1070-1087
  • 3. BAŻANT Z.P., 1994, Nonlocal damage theory based on micromechanics of crack interactions, J. Engng Mech., 120, 593-617
  • 4. BAŻANT Z.P., OŻBOLT J., 1990, Nonlocal microplane model for fracture, damage and size effect in structures, J. Engng Mech. ASCE, 116, 2485-2505
  • 5. BAŻANT Z.P., PIJAUDIER-CABOT G., 1988, Nonlocal continuum damage, localization instability and convergence, J. Appl. Mech., 55, 287-293
  • 6. BERIS A.N., EDWARDS B.J., 1994, Thermodynamics of Flowing Systems with Internat Microstructure, Oxford University Press, New York, Oxford
  • 7. BlLBY B.A., BULLOUGH R., SMITH E., 1955, Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry, Proc. R. Soc. Lond. A, 231, 263-273
  • 8. BOFFI S., BOTTANI C.E., CAGLIOTI G., OSSI P.M., 1980, Strain driven ther-moelastic instability toward brittle fracture, Z. Physik B - Condensed Matter, 39, 135-141
  • 9. BRAND L., 1947, Vector and Tensor Analysis, John Wiley, New York
  • 10. CATTANEO C., 1948, Sulla condu/Jone de calore, Atti del Semin. Mat. Fis. Univ. Modena, 3, 3-21
  • 11. COSTANZO F., BOYD J.G., ALLEN D.H., 1996, Micromechanics and homogenization of inelastic composite materials with growing cracks, J. Mech. Phys. Solids, 44, 333-370
  • 12. DAY W. A., 1972, The Thermodynamics of Simple Mateńals with Fading Memory, Springer-Verlag, Berlin
  • 13. DE BORST R., MUHLHAUS H.-B., 1992, Gradient-dependent plasticity: formu-lation and algorithmic aspects, Int. J. Numer. Meths Engng, 35, 521-539
  • 14. DE BORST R., BENALLAL A., HEERES O.M., 1996, A Gradient-enhanced damage approach to fracture, J. Phys. IV, 6, 411-502
  • 15. EDELEN G.G.B., 1969, Protoelastic bodies with large deformation, Arch. Rat. Mech. Anal., 34, 283-300
  • 16. EDELEN D.G.B., 1976, Nonlocal Field Theories, In Continuum Physics, Vol. IV, edited by A.C. Eringen, Academic Press, New York, 75-204
  • 17. ERICKSEN J.L., 1961, Conservation lawsfor liquid Crystals, Trans. Soc. Rheol., 5, 23
  • 18. ERINGEN A.C., 1964, Simple microfluids, Int. J. Engng Scl, 2, 205-217
  • 19. ERINGEN A.C., 1992, Vistas of nonlocal continuum physics, Int. J. Engng Sci., 30, 1551-1565
  • 20. ERINGEN A.C., EDELEN D.G.B., 1972, On nonlocal Elasticity, Int. J. Engng Sci, 10, 233-248
  • 21. FLECK N.A., HuTCHiNSON J.W., 1997, Strain gradient plasticity, Adv. Appl. Mech., 33, 295-361
  • 22. GAO H., HUANG Y., NlX W.D., HUTCHINSON J.W., 1999, Mechanism-based strain gradient plasticity - I. Theory, J. Mech. Phys. Solids, 47, 1239-1263
  • 23. GIRIFALCO L. A., 1973, Statistical Physics of Materials, John Wiley and Sons, New York
  • 24. GREEN A.E., RIVLIN R.S., 1964a, Simple force and stress multipoles, Arch. Rat. Mech. Anal., 16, 325-353
  • 25. GREEN A.E., RIVLIN R.S., 1964b, Multipolar continuum mechanics, Arch. Rat. Mech. Anal, 17, 113-147
  • 26. GURTIN M.E., WILLIAMS W.O., 1971a, On continuum thermodynamics with mutual body forces and internal radiation, ZAMP, 22, 293-298
  • 27. GURTIN M.E., WILLIAMS W.O., 1971b, On the first law of thermodynamics, Arch. Rat. Mech. Anal, 42, 77-92
  • 28. KRÓNER E., 1960, AUgemeine Kontinuumstheorie der Versetzungen und Eigen-spannungen, Arch. Rat. Mech. Anal, 4, 273-334
  • 29. KRUMHANSL J.A., 1968, Some Considerations of the Relationship between Solid State Physics and Generalized Continuum Mechanics, In: Mechanics of Generalized Continua, Springer, Berlin, Heidelberg, New York, 298-311
  • 30. KUNIN I.A., 1968, The Theories of Elastic Media with Microstructure, In: Me¬chanics of Generalized Continua, Springer, Berlin, Heidelberg, New York, 321-329
  • 31. KUNIN I. A., 1982, Elastic Media with Microstructure. I: One-Dimensional Mo-dels, Springer-Verlag, Berlin, Heidelberg
  • 32. KUNIN I.A., 1983, Elastic Media with Microstructure. II: Three-Dimensional Models, Springer-Verlag, Berlin, Heidelberg
  • 33. LE K.C., STUMPF H., 1996a, A model of elastoplastic bodies with continuously distributed dislocations, Int. J. Plasticity, 12, 611-627
  • 34. LE K.C., STUMPF H., 1996b, On the determination of the crystal reference in nonlinear continuum theory of dislocations, Proc. Roy. Soc. Lond. A, 452, 359-371
  • 35. LEROY Y.M., MOLINARI A., 1993, Spatial patterns and size effects in shear zones: A hyperelastic model with higher-order gradients, J. Mech. Phys. Solids, 41, 631-663
  • 36. MAUGIN G.A., 1979, Nonlocal theories or gradient-type theories: a matter of convenience, Arch. Mech., 31, 15-26
  • 37. MIEHE C., 1998, A theoretical and computational model for isotropic elasto¬plastic stress analysis in shells at large strains, Compt. Meths Appl Mech. Engng, 155, 193-233
  • 38. MILLER R., PHILLIPS R., BELTZ G., ORTIZ M., 1998, A non-local formułation of the peierls dislocation model, J. Mech. Phys. Solids, 46, 1845-1867
  • 39. MINDLIN R.D., 1964, Microstructure in linear elasticity, Arch. Rat. Mech. Anal, 16, 51-78
  • 40. MINDLIN R.D., 1965, Second gradient of strain and surface tension in linear elasticity, Int. J. Solids Struct., 1, 417-438
  • 41. MINDLIN R.D., TIERSTEN H.F., 1962, Effects of couple-stresses in linear elasticity, Arch. Rat. Mech. Anal., 11, 415-448
  • 42. NAGHDI P.M., SRINIVASA A.R., 1993, A dynamical theory of structured solids. Part I: Basic developments, Phil. Trans. R. Soc. Lond. A, 345, 425-458
  • 43. NAGHDI P.M., SRINIVASA A.R., 1994, Characterization of dislocations and their influence on plastic deformation in single crystals, Int. J. Engng Sci, 32, 1157-1182
  • 44. NiLSSON C, 1998, On nonlocal rate-independent plasticity, Int. J. Plasticity, 14, 551-575
  • 45. NOWACKI W., 1986, Theory of Asymmetńc Elasticity, Pergamon Press, Oxford/PWN, Warsaw
  • 46. PAG ANO S., ALART P., 1999, Solid-solid phase transition modelling: relaxation procedures, configurational energies and thermomechanical behaviours, Int. J. Engng Sci, 37, 1821-1840
  • 47. PAGANO S., ALART P., MAISONNEUVE O., 1998, Solid-solid phase transition. Local and global minimization of non-convex and related potentials. Isothermal case for shape memory alloys, Int. J. Engng Sci., 36, 1143-1172
  • 48. PEIERLS R.E., 1940, The size of a dislocation, Proc. Phys. Soc. Lond., 52, 14
  • 49. RAKOTOMAMANA R., 2001. Connecting mesoscopic and macroscopic scalę leng-ths for ultrasonic wave characterization of micro-cracked materiał, Math. Mech. Solids, (in the review procedurę)
  • 50. RiCE J.R., 1968, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379-386
  • 51. ROEHL D., RAMM E., 1996, Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept, Int. J. Solids Struct., 33, 3215-3237
  • 52. ROGULA D., 1973, On nonlocal continuum theories of elasticity, Arch. Mech., 25, 233-251
  • 53. RUND H., 1966, The Hamilton-Jacobi Theory in the Calculus of Variations, D. Van Nostrand, London
  • 54. SACZUK J., STUMPF H., VALLEE, C, 2001, A Continuum model accounting for defect and mass densities in solids with inelastic materiał behaviour, Int. J. Solids Struct, (in print)
  • 55. SCHIECK B., SMOLEŃSKI W.M., STUMPF H., 1999, A shell finite element for large strain elastoplasticity with anisotropies. Part I: Shell theory and variatio-nal principle. Part II: Constitutive eąuations and numerical applications, Int. J. Solids Struci, 36, 5399-5424; 5425-5451
  • 56. SIENIUTYCZ S., 1981a, Thermodynamics of coupled heat, mass and momentum transport with finite wave speed. I - Basic ideas of theory, Int. J. Heat Mass Transfer, 24, 1723-1732
  • 57. SIENIUTYCZ S., 1981b, Thermodynamics of coupled heat, mass and momentum transport with finite wave speed. II - Examples of transformations of fluxes and forces, Int. J. Heat Mass Transfer, 24, 1759-1769
  • 58. STOUT R.B., 1981, Modelling the deformations and thermodynamics for ma-terials involving a dislocation kinetics, Crystal Lattice Defects, 9, 65-91
  • 59. STUMPF H., SACZUK J., 2000, A generalized model of oriented continuum with defects, Z. Angew. Math. Mech., 80, 147-169
  • 60. STUMPF H., SACZUK J., 2001, On a generał concept for the analysis of crack growth and materiał damage, Int. J. Plasticity, 17, 991-1028
  • 61. TOUPIN R.A., 1962, Elastic materials with couple-stresses, Arch. Rat. Mech. Anal, 11, 385-414
  • 44. NiLSSON C, 1998, On nonlocal rate-independent plasticity, Int. J. Plasticity, 14, 551-575
  • 45. NOWACKI W., 1986, Theory of Asymmetńc Elasticity, Pergamon Press, Oxford/PWN, Warsaw
  • 46. PAG ANO S., ALART P., 1999, Solid-solid phase transition modelling: relaxation procedures, configurational energies and thermomechanical behaviours, Int. J. Engng Sci, 37, 1821-1840
  • 47. PAGANO S., ALART P., MAISONNEUVE O., 1998, Solid-solid phase transition. Local and global minimization of non-convex and related potentials. Isothermal case for shape memory alloys, Int. J. Engng Sci., 36, 1143-1172
  • 48. PEIERLS R.E., 1940, The size of a dislocation, Proc. Phys. Soc. Lond., 52, 14
  • 49. RAKOTOMAMANA R., 2001. Connecting mesoscopic and macroscopic scale leng-ths for ultrasonic wave characterization of micro-cracked materiał, Math. Mech. Solids, (in the review procedurę)
  • 50. RiCE J.R., 1968, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379-386
  • 51. ROEHL D., RAMM E., 1996, Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept, Int. J. Solids Struct., 33, 3215-3237
  • 52. ROGULA D., 1973, On nonlocal continuum theories of elasticity, Arch. Mech., 25, 233-251
  • 53. RUND H., 1966, The Hamilton-Jacobi Theory in the Calculus of Variations, D. Van Nostrand, London
  • 54. SACZUK J., STUMPF H., VALLEE, C, 2001, A Continuum model accounting for defect and mass densities in solids with inelastic materiał behaviour, Int. J. Solids Struct, (in print)
  • 55. SCHIECK B., SMOLEŃSKI W.M., STUMPF H., 1999, A shell finite element for large strain elastoplasticity with anisotropies. Part I: Shell theory and variational principle. Part II: Constitutive eąuations and numerical applications, Int. J. Solids Struci, 36, 5399-5424; 5425-5451
  • 56. SIENIUTYCZ S., 1981a, Thermodynamics of coupled heat, mass and momentum transport with finite wave speed. I - Basic ideas of theory, Int. J. Heat Mass Transfer, 24, 1723-1732
  • 57. SIENIUTYCZ S., 1981b, Thermodynamics of coupled heat, mass and momentum transport with finite wave speed. II - Examples of transformations of fluxes and forces, Int. J. Heat Mass Transfer, 24, 1759-1769
  • 58. STOUT R.B., 1981, Modelling the deformations and thermodynamics for materials involving a dislocation kinetics, Crystal Lattice Defects, 9, 65-91
  • 59. STUMPF H., SACZUK J., 2000, A generalized model of oriented continuum with defects, Z. Angew. Math. Mech., 80, 147-169
  • 60. STUMPF H., SACZUK J., 2001, On a generał concept for the analysis of crack growth and materiał damage, Int. J. Plasticity, 17, 991-1028
  • 61. TOUPIN R.A., 1962, Elastic materials with couple-stresses, Arch. Rat. Mech. Anal, 11, 385-414
  • 44. NiLSSON C, 1998, On nonlocal rate-independent plasticity, Int. J. Plasticity, 14, 551-575
  • 45. NOWACKI W., 1986, Theory of Asymmetńc Elasticity, Pergamon Press, Oxford/PWN, Warsaw
  • 46. PAG ANO S., ALART P., 1999, Solid-solid phase transition modelling: relaxation procedures, configurational energies and thermomechanical behaviours, Int. J. Engng Sci, 37, 1821-1840
  • 47. PAGANO S., ALART P., MAISONNEUVE O., 1998, Solid-solid phase transition. Local and global minimization of non-convex and related potentials. Isothermal case for shape memory alloys, Int. J. Engng Sci., 36, 1143-1172
  • 48. PEIERLS R.E., 1940, The size of a dislocation, Proc. Phys. Soc. Lond., 52, 14
  • 49. RAKOTOMAMANA R., 2001. Connecting mesoscopic and macroscopic scalę leng-ths for ultrasonic wave characterization of micro-cracked materiał, Math. Mech. Solids, (in the review procedurę)
  • 50. RiCE J.R., 1968, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379-386
  • 51. ROEHL D., RAMM E., 1996, Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept, Int. J. Solids Struct., 33, 3215-3237
  • 52. ROGULA D., 1973, On nonlocal continuum theories of elasticity, Arch. Mech., 25, 233-251
  • 53. RUND H., 1966, The Hamilton-Jacobi Theory in the Calculus of Variations, D. Van Nostrand, London
  • 54. SACZUK J., STUMPF H., VALLEE, C, 2001, A Continuum model accounting for defect and mass densities in solids with inelastic materiał behaviour, Int. J. Solids Struct, (in print)
  • 55. SCHIECK B., SMOLEŃSKI W.M., STUMPF H., 1999, A shell finite element for large strain elastoplasticity with anisotropies. Part I: Shell theory and variatio-nal principle. Part II: Constitutive eąuations and numerical applications, Int. J. Solids Struci, 36, 5399-5424; 5425-5451
  • 56. SIENIUTYCZ S., 1981a, Thermodynamics of coupled heat, mass and momentum transport with finite wave speed. I - Basic ideas of theory, Int. J. Heat Mass Transfer, 24, 1723-1732
  • 57. SIENIUTYCZ S., 1981b, Thermodynamics of coupled heat, mass and momentum transport with finite wave speed. II - Examples of transformations of fluxes and forces, Int. J. Heat Mass Transfer, 24, 1759-1769
  • 58. STOUT R.B., 1981, Modelling the deformations and thermodynamics for ma-terials involving a dislocation kinetics, Crystal Lattice Defects, 9, 65-91
  • 59. STUMPF H., SACZUK J., 2000, A generalized model of oriented continuum with defects, Z. Angew. Math. Mech., 80, 147-169
  • 60. STUMPF H., SACZUK J., 2001, On a generał concept for the analysis of crack growth and materiał damage, Int. J. Plasticity, 17, 991-1028
  • 61. TOUPIN R.A., 1962, Elastic materials with couple-stresses, Arch. Rat. Mech. Anal, 11, 385-414
  • 44. NiLSSON C, 1998, On nonlocal rate-independent plasticity, Int. J. Plasticity, 14, 551-575
  • 45. NOWACKI W., 1986, Theory of Asymmetńc Elasticity, Pergamon Press, Oxford/PWN, Warsaw
  • 46. PAG ANO S., ALART P., 1999, Solid-solid phase transition modelling: relaxation procedures, configurational energies and thermomechanical behaviours, Int. J. Engng Sci, 37, 1821-1840
  • 47. PAGANO S., ALART P., MAISONNEUVE O., 1998, Solid-solid phase transition. Local and global minimization of non-convex and related potentials. Isothermal case for shape memory alloys, Int. J. Engng Sci., 36, 1143-1172
  • 48. PEIERLS R.E., 1940, The size of a dislocation, Proc. Phys. Soc. Lond., 52, 14
  • 49. RAKOTOMAMANA R., 2001. Connecting mesoscopic and macroscopic scalę leng-ths for ultrasonic wave characterization of micro-cracked materiał, Math. Mech. Solids, (in the review procedurę)
  • 50. RiCE J.R., 1968, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379-386
  • 51. ROEHL D., RAMM E., 1996, Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept, Int. J. Solids Struct., 33, 3215-3237
  • 52. ROGULA D., 1973, On nonlocal continuum theories of elasticity, Arch. Mech., 25, 233-251
  • 53. RUND H., 1966, The Hamilton-Jacobi Theory in the Calculus of Variations, D. Van Nostrand, London
  • 54. SACZUK J., STUMPF H., VALLEE, C, 2001, A Continuum model accounting for defect and mass densities in solids with inelastic materiał behaviour, Int. J. Solids Struct, (in print)
  • 55. SCHIECK B., SMOLEŃSKI W.M., STUMPF H., 1999, A shell finite element for large strain elastoplasticity with anisotropies. Part I: Shell theory and variatio-nal principle. Part II: Constitutive eąuations and numerical applications, Int. J. Solids Struci, 36, 5399-5424; 5425-5451
  • 56. SIENIUTYCZ S., 1981a, Thermodynamics of coupled heat, mass and momentum transport with finite wave speed. I - Basic ideas of theory, Int. J. Heat Mass Transfer, 24, 1723-1732
  • 57. SIENIUTYCZ S., 1981b, Thermodynamics of coupled heat, mass and momentum transport with finite wave speed. II - Examples of transformations of fluxes and forces, Int. J. Heat Mass Transfer, 24, 1759-1769
  • 58. STOUT R.B., 1981, Modelling the deformations and thermodynamics for ma-terials involving a dislocation kinetics, Crystal Lattice Defects, 9, 65-91
  • 59. STUMPF H., SACZUK J., 2000, A generalized model of oriented continuum with defects, Z. Angew. Math. Mech., 80, 147-169
  • 60. STUMPF H., SACZUK J., 2001, On a generał concept for the analysis of crack growth and materiał damage, Int. J. Plasticity, 17, 991-1028
  • 61. TOUPIN R.A., 1962, Elastic materials with couple-stresses, Arch. Rat. Mech. Anal, 11, 385-414
  • 62. TOUPIN R.A., 1964, Theories of elasticity with couple-stress, Arch. Rat. Mech. Anal, 17, 85-112
  • 63. VALANIS K.C., 1969, J. Composite Materials, 3, 294
  • 64. WILSON K.G., KOGUT J., 1974, The renormalization group and the e expan-sion, Phys. Reports, 12C, 75-199
  • 65. WOŹNIAK C, 1973, Discrete elastic Cosserat media, Arch. Mech., 25, 119-136
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0013-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.