Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this contribution is threefold. First, we formulate unilateral contact problems for three models of plates and the Koiter shell model. Contact conditions have been formulated on the face being in contact with an obstacle and not on the mid-plane of the plate or the middle surface of the shell. Such a rigorous approach results in nonconvex minimization problems even in the case of thin, geometrically linear plates. Existence theorems are formulated for each model considered. Second, the Ito and Kunisch (1990, 1995) augmented Lagrangians methods have been extended to nonconvex problems. Third, nonconvex duality theory by Rockafellar and Wets (1998), valid for finite-degree-of-freedom systems has been extended to continuous systems. Specific examples have also been provided.
Metody rozszerzonego lagranżianu dla pewnej klasy wypukłych i niewypukłych zagadnień kontaktowych. Cel pracy jest trojaki. Po pierwsze, sformułowane zostały jednostronne zagadnienia kontaktowe dla trzech modeli płyt oraz liniowego modelu powłok Koitera. Warunki kontaktu zostały sformułowane na powierzchni będące w kontakcie z podłożem, a nie na powierzchni środkowej płyty lub powłoki. Takie ścisłe podejście prowadzi do niewypukłych zadań minimalizacji, nawet w przypadku płyt cienkich. Dla każdego zagadnienia sformułowano twierdzenie o istnieniu rozwiązań. Po drugie, metody rozszerzonego lagranżianu Ito i Kunischa (1990, 1995) uogólnione zostały na przypadek zagadnień niewypukłych. Po trzecie, teoria dualności Rockafellara i Wetsa (1998), opracowana dla skończenie wymiarowych zagadnień niewypukłych, została rozszerzona na przypadek układów ciągłych. Podano również kilka przykładów.
Czasopismo
Rocznik
Tom
Strony
741--768
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
- Institute of Fundamental Technological Research, Polish Academy of Science, Warsaw
autor
- Institute of Fundamental Technological Research, Polish Academy of Science, Warsaw
autor
- Institute of Geophysics, Polish Academy of Sciences, Warsaw
Bibliografia
- 1. BAIOCCHI C., BUTTAZZO G., GASTALDI F., TOMARELLI F., 1988, General Existence Theorems for Unilateral Problems in Continuum Mechanics, Arch. Rat. Mech. Anal., 100, 149-189.
- 2. BENAOUDA, M.K.-E., TELEGA J.J., 1997, On Existence of Minimizers for Saint-Venant Kirchhoff Bodies: Placement Boundary Condition, Bull. Pol. Acad. Sci., Tech. Sci., Tech. Sci., 45, 211-223.
- 3. BERNADOU M., 1996, Finite Element Methods for Thin Shell Problems, John Wiley & Sons, Chichester; Masson, Paris.
- 4. BIELSKI W., TELEGA J.J., 1985a, A Contribution to Contact Problems for a Class of Solids and Structures, Arch. Mech., 37, 303-320.
- 5. BIELSKI W.R., TELEGA J.J., 1985b, A Note on Duality for von Karmän Plates in the Case of the Obstacle Problem, Arch. Mech., 37, 135-141.
- 6. BIELSKI W.R., TELEGA J.J., 1985c, On the Complementary Energy Principle in Finite Elasticity, in: Proc. of the Int. Conf. on Nonlinear Mechanics, Shanghai, China Science Press, Beijing, 211-218.
- 7. BIELSKI W.R., TELEGA J.J., 1985d, On the Obstacle Problem for Linear and Nononlinear Elastic Plates in: Variational Methods in Engineering, edit. by C.A. Brebbia, Springer-Verlag, Berlin, (3-55)-(3-64).
- 8. BIELSKI W.R., TELEGA J.J., 1986, The Complementary Energy Principle in Finite Elastostatics as a Dual Problem, in: Finite Rotations in Structural Mechanics, Lecture Notes in Engineering, 19, Springer-Verlag, Berlin, 62-81.
- 9. BIELSKI W., TELEGA J.J., 1992, On Existence of Solutions and Duality for a Model of Non-Linear Elastic Plates with Transverse Shear Deformations, IFTR Reports, 35/1992.
- 10. BIELSKI W.R., TELEGA J.J., 1996, Non-Linear Elastic Plates of Moderate Thickness: Existence, Uniqueness and Duality, J. Elasticity, 42, 243-273.
- 11. BIELSKI W.R., TELEGA J.J., 1998, Existence of Solutions to Obstacle Problems for Linear and Nonlinear Elastic Plates, Math. Comp. Modelling, 28,55-66.
- 12. BIELSKI W.R., GALKA A., TELEGA J.J., 1988, The Complementary Energy Principle and Duality for Geometrically Nonlinear Elastic Shells - Part I. A Simple Model of Moderate Rotations Around Tangent to the Middle Surface, Bull. Polish Acad. Sci., Tech. Sci., 36, 415-426.
- 13. BIELSKI W.R., GALKA A., TELEGA J.J., 1989, The Complementary Energy Principle and Duality for Geometrically Nonlinear Elastic Shells - Part IV. Simplified Form of Nonlinear Tensor of Changes of Curvature. The Complementary Energy Principle Expressed in Terms of Internal Forces and Displacements, Bull. Pol. Acad. Sci., Tech. Sci., Tech. Sci., 37, 391-400.
- 14. BIELSKI W.R., GALKA A., TELEGA J.J., 2000, On Contact Problems for Linear and Nonlinear Elastic Plates: Existence of Solutions and Application of Augmented Lagrangian Methods, in: Mutifield Problems-State of the Art., A.-M. Sanding, W. Shiehlen, W.L. Wenland (edit.), 237-245, Springer-Verlag, Berlin.
- 15. CEA J., 1971, Optimization: Theorie et Algorithme, Herrmann, Paris.
- 16. CIARLET P.G., 1988, Mathematical Elasticity, North Holland, Amsterdam.
- 17. CIARLET P.G., RABIER P., 1980, Les Equations de von Karman, Springer-Verlag, Berlin.
- 18. DHIA H.B., 1989, Equilibre d'une Plaque Mince Elastique avec Contact Unilateral et Frottement de Type Coulomb, C. R. Acad. Sci. Paris, Serie I, 308,293-296.
- 19. DUVAUT G., LIONS J.-L., 1972, Les Inequations en Mecanique et en Physique, Dunod, Paris.
- 20. DUVAUT G., LIONS J.-L., 1974, Problemes Unilateraux dans la Theorie de la Flexion Forte des Plaques, J. Mec., 13, 51-74; II. Le cas d'evolution, ibid.,245-266.
- 21. EKELAND I., TEMAM R., 1976, Convex Analysis and Variational Problems, North -Holland, Amsterdam.
- 22. FLOSS A., ULBRICHT V., 1994, Elastic-Plastic Shells with Finite Deformations and Contact Treatment, Arch. Mech., 46, 449-461.
- 23. FUNG Y.C., 1965, Foundations of Solids Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey.
- 24. GALKA A., TELEGA J.J., 1990, The Complementary Energy Principle for a Model of Shells with an Independent Rotation Vector, Zeitschr. Ang. Mech.,70, T253-T256.
- 25. GALKA A., TELEGA J.J., 1992, The Complementary Energy Principle and Duality for a Specific Model of Geometrically Nonlinear Elastic Shells with an Independent Rotation Vector: General Results, Eur. J. Mechanics, 11, 245-270.
- 26. GALKA A., TELEGA J.J., 1995, Duality and the Complementary Energy Principle for a Class of Non-Linear Structures. Part I. Five-parameter Shell Model, Arch. Mech. , 47, 1995, 677-698; Part II. Anomalous Dual Variational Principles for Compressed Elastic Beams, ibid., 699-724.
- 27. GAŁKA A., TELEGA J.J., BIELSKI W.R., 1989, The Complementary Energy Principle and Duality for Geometrically Nonlinear Elastic Shells - Part III. Nonlinear Tensor of Changes of Curvature, Bull. Pol. Acad. Sci., Tech. Sci., 37, 375-389.
- 28. HE Q.-C., TELEGA J.J., CURNIER A., 1996, Unilateral Contact of Two Solids Subject to Large Deformation and Existence Results, Proc. R. Soc., London, A452, 2691-2717.
- 29. ITO K., KUNISCH K., 1990, An Augmented Lagrangian Technique for Variational Inequalities, Appl. Math. Optim., 21, 223-241.
- 30. ITO K., KUNISCH K., 1995, Augmented Lagrangian Methods for Nonsmooths, Convex Optimization in Hilbert Spaces, in: Control of Partial Differential Equations and Applications, edit. by E. Casas, 107-117, Marcel Dekker.
- 31. JEMIELITA G., 1991, On the Windings Paths of the Theory of Plates, Pol. Warszawska, Prace Naukowe, Budownictwo, 117, Warszawa, in Polish.
- 32. KOITER W. T., 1965, On the Nonlinear Theory of Thin Elastic Shell, Proc. Kon. Nederl. Acad. Wetensch., B69, 1-54.
- 33. LEWIŃSKI T., 1987, On Refined Plate Models Based on Kinematical Assumptions, Ing.-Archiv., 57, 133-146.
- 34. LEWIŃSKI T., TELEGA J.J., 2000, Plates, Laminates and Shells: Asymptotic Analysis and Homogenization, Series on Advances in Mathematics for Applied Sciences, vol. 52, World Scientific, Singapore.
- 35. NANIEWICZ Z., PANAGIOTOPOULOS P. D., 1985, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, New York.
- 36. NECAS J., HLAVACEK I., 1981, Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Elsevier, Amsterdam.
- 37. NIORDSON FT, 1985, Shell Theory, North-Holland, Amsterdam.
- 38. OGDEN R.W., 1984, Non-Linear Elastic Deformations, Ellis Horwood, Chichester.
- 39. PANAGIOTOPOULOS P.D., 1985, Inequality Problems in Mechanics and Applications, Brikhauser Verlag, Basel.
- 40. REISSNER E., 1985, Reflections on the Theory of Elastic Plates, Appl. Mech. Rev., 38, 1453-1464.
- 41. ROCKAFELLAR R.T., WETS R.J.-B., 1998, Variational Analysis, Springer-Verlag, Berlin.
- 42. TELEGA, J.J., 1989, On the Complementary Energy Principle in Non-Linear Elasticity, Part I: Von Kármán Plates and Three-Dimensional Solids, C.R. Acad. Sci. Paris, Serie II, 308, 1193-1198; Part II: Linear Elastic Solid and Non-Convex Boundary Condition, Minimax Approach, ibid., 309, 951-956.
- 43. TELEGA J.J., 1987, Variational Methods in Contact Problems of the Mechanics, Uspekhi Mekhaniki (Adv. in Mech.), 10, 3-95, in Russian.
- 44. TELEGA J.J., JEMIOŁO S., 2001, Macroscopic Behaviour of Locking Materials with Microstructure. Part III. Stochastic Homogenization and Augmented Lagrangian Methods for Solving Local Problems, Bull. Pol. Acad. Sci., Tech. Sci., in press.
- 45. TELEGA J.J., GAŁKA A., 1998, Augmented Lagrangian Methods and Applications to Contact Problems, in: Theoretical Foundation of Civil Engineering, edit. by W. Szcześniak, 335-348, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw.
- 46. TELEGA J.J., GAŁKA A., 2001, Augmented Lagrangian Methods for Contact Problems, Optimal Control and Image Restoration, in: From Convexity to Non-convexity, Kluwer.
- 47. TELEGA J.J., BIELSKI W.R., GAŁKA A., 1988, The Complementary Energy Principle and Duality for Geometrically Nonlinear Elastic Shells-Part II. Moderate Rotation Theory, Bull. Pol. Acad. Sci., Tech. Sci., 36, 427-439.
- 48. YOSIDA K., 1978, Functional Analysis, Springer-Verlag, Berlin.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0012-0059