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In the paper, the non-linear vibrations and stability of a compound two-
rod column with different bending rigidities of its members are investi-
gated. The support of the column is pinned and has a rotational spring
the stiffness of which can be either constant or dependent on the applied
load. A perturbation technique is chosen to solve the problem. As the
column is loaded by a partially follower load it loses its stability via di-
vergence or flutter. For the case of the nonconservative load an adjoint
system is formulated for finding the amplitude-frequency relation. The
linear part of the natural frequency for adjoint systems is the same, but
the non-linear terms differ for each system because they depend on the
vibration modes. The support stiffening may lower the critical load of
the column.
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1. Introduction

The stability and vibration of elastically restrained columns and frames
subjected to a conservative or nonconservative loads have been studied tho-
roughly by many researchers. The problem became especially important after
the experimental investigation on the behaviour of a steel column base con-
nection done and described by Piccard and Beaulieu (1985), Piccard et al.
(1986). Their results showed that the compressive force significantly increases
the flexural stiffness of this connection, and because of that, in the design of
such systems, the rotational spring with its stiffness dependent on the external
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load should be considered. The effect of such support stiffening on the column
buckling for two columns, one pinned at the top and the second clamped at
the top was studied by Plaut (1989). The support stiffened with the compres-
sing force according to a linear relation, and when the stiffening parameter
increased the critical force increased as well. Guran and Plaut (1993) exten-
ded the investigation on the case of an elastic column under a follower load.
The rotational spring supporting the column had stiffness either constant or
increasing with a linear or quadratic function. It was found that the initial
spring stiffness and the stiffening rate may lower the critical load and have a
crucial effect on the vibration and stability of such a system.

The main purpose of this work is to show how for the stiffening of the sup-
port can affect the natural vibration and stability of a geometrically non-linear
two-member elastic slender structure loaded by a partially follower force. In
this way the conservative or nonconservative load can be studied dependently
on the follower parameter, and as a result, the divergence or flutter instability
of the system. The problem of the flutter and divergence instabilities appli-
cable to engineering was thoroughly described by Kurnik (1997) in his book.
Methods of the analysis of columns under follower forces were presented by
Bogacz and Janiszewski (1986). There are two physical models of the struc-
ture: a column made of two coaxial tubes, or a tube and a bar, or a planar
frame made of a strip located in the centre of the structure in which the se-
cond member is formed by two identical strips, symmetrically located at both
sides of the central strip. Buckling of the prestressed frame with one clamped
end was experimentally and theoretically investigated by Godley and Chilver
(1970). Przybylski et al. (1996), examining theoretically and experimentally
the free vibration and stability of a compound pinned frame, found that the
distribution of bending rigidity of the frame members had the essential influ-
ence on the natural vibrations of the system and this effect can be diminished
by introducing a prestress into the structure. The stochastic stability of a
compound column was studied by Tylikowski (1991).

The problem investigated in this work is a continuation, in the sense of the
same object, of the problem studied by the author (1999) where the influence
of the prestress on the stability of a cantilever column loaded by a follower
force was presented. It was shown in the latter work that the prestress can
cause discontinuities in the critical force and that the instability of such a
system can occur for small values of the external load.

While creating a mathematical model of a given system, especially when
follower loads are concerned the results of experimental investigation and their
comparison with the applied theory should be taken into account. Sugiyama



INFLUENCE OF THE SUPPORTING SPRING STIFFNESS... 131

et al. (1995) presented the experimental results, which well agreed with the
theoretical flutter predictions, for cantilevered columns with an intermediate
mass and subjected to a rocket thrust. Knowing that the internal structural
damping may stabilise or destabilise a nonconservative system, the authors
neglected it in the theoretical FEM model, which proves that it can be done
for structures with very small damping. Similar investigations were done by
Mullagulov (1994), who compared the theoretical and experimental results
of the critical flutter forces for columns with constant and stepwise varying
cross-sections. Despite the absence of the internal damping in the theoretical
continuous model, the differences between the results were within the range
of 4.0 + 6.5 per cent. The theoretical predictions done in the last two cited
works and also by Gasparini et al. (1995) were made on the base of the kinetic
instability criterion saying that the critical flutter load is the value of the load
at which the two smallest natural frequencies approach each other until they
coalesce. The divergence critical load is the value of the load at which the
smallest eigenvalue becomes equal to zero. The kinetic criterion is also used
in this work.

2. Solution of the problem

The scheme of deformed axes of both rods of the column subject to a
partially follower load is given in Fig.1. The external force acts depending on
the follower parameter 7 which implies that the system is conservative for
7 = 0 and nonconservative for 5 > 0. The ends of the members of the column
are rigidly connected to each other in both the displacement and rotational
senses. The column is pinned with a rotational spring, the stiffness of which
can be constant or may increase when the spring is compressed.

The governing equations of the system are identical to those derived by
Przybylski et al. (op. cit.) on the basis of the strain-displacement relations for
a beam undergoing a moderately large deflection, described by von Kérman
and applied by Woinowsky-Krieger (1950), and presented by Levinson (1996)
Hamilton’s principle. The equations have the following non-dimensional form:
— for the lateral vibration of the ith of the column (i =1,2)

a4wi (67 T)

*wi(€, ) Pw;(€,7)

et

=0 (2.1)
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Fig. 1. Scheme of the deflected axis of rods of the two-member column subject to a
partially follower force

— for the longitudinal displacement u;(¢,7) of the ith rod (1 =1, 2)

wler) =~ 3¢ - 5 / i 2)

where

Wiz, T) S;12
S by = i

A
= 92 4Pt

E;I;

w; =

for i = 1,2 denote the non-dimensional transverse displacements, load para-
meters and non-dimensional frequency parameter, respectively, and

l ~ length of the column
2, - nthnatural frequency
E;I; - Dbending stiffness of the 4th rod

piA; - mass per the unit length of the ith rod.
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The other dimensionless quantities are as follows

¢ =

.72 :
=HE e = 2T

% T =t

(2.3)

A perturbation technique is used to study the behaviour of the system in
the neighbourhood of linear solutions since a closed form of the solution to
equations (2.1) and (2.2) is not possible to obtain. By making use of the per-
turbation method, the corresponding quantities are expanded into exponential
series with respect to the small amplitude parameter ¢ (cf Evansen, 1968; Oz
et al., 1998), i =1,2

N
wi(€,7) =Y ¥ w5 1y(€,7) + O(eNT)
j=1

N
ki(r) = kig + Y €¥kjgay(r) + O™ ) (2.4)
j=1

N
Wpi = Wpi + Z Eijgij) + O(6N+1)

=1
where wﬁfij ) stands for the frequency correction coefficients, and for ¢ =1,2
wi (€,7) = wz(ll) (1) cosT
wiz(€,T) = wg) (t)cosT + wg’) (1) cos 3
wis(E,7) = 'wZ%) (t)cosT + w§§) (1) cos 3T + wg) (t)cosbr  (2.5)
and

kio(T) = k§§) + kg) cos 27
kia(r) = & + k& cos 27 + k() cos 47 (2.6)

Following the standard procedure, equations (2.4) are substituted into equ-
ations of motion (2.1) and axial displacements (2.2). The coefficient of each
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power of ¢ is collected and equated with zero which results in the following
set of equations of motion and longitudinal displacements (i = 1,2)

O ()= -2 (27)
O(eh) w{lv(.ﬁ, T) + kiow{f(ﬁ, T) + wpiw; (§,7) =0 (2.8)

£
o) walen=-"20e- 2 [whe e @9)
0

0(53) ’LUZI:Y(& 7-) -+ ]{;Zow{g{(f, T) -+ wniwi(%(&a T) = (2]_0)

—kio(T)wl (€, 7) — Wi (€, 7)

The roman numerals and dots denote derivatives with respect to £ and 7,
respectively.

Equations (2.7) + (2.10) are associated with the following boundary con-
ditions ( =1, 3,5,...)
w1(0,7) = we(0,7) =0
wi;(1,7) = we;(1,7)
w{j(fﬁ)kzo = ng(&vT)I‘ﬁ:O
whi(€,Tle=1 = wi; (€, 7)le=1 (2.11)
wi(€,)le=0 + pwh] (€, 7)|e=0 — km ()w;(€,7)|e=0 = 0
Wil (€, 7)le=1 + pwi] (€, 7)|g=1 =0

w{]lf(faT)|§=1 + ngI(g,T)lgsl +p(1 —n)(L+ M)w{j(f, )|e=1 =0

and
u15(0,7) = u2;(0,7) =0 u1;(1,7) = ug;(1,7) j=2,4,...(2.12)

kiopr + kaope = p (2.13)
klj("')ﬂzl + k’zj(T)/Jz =0 j=2,4,.. (2.14)
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where
pi? E I
P=FS5—F 5 M= w707
EiI1 + Es Iy E I + By,
N EZIQ _ E2I2
H2 = E\I + EsI b= Eq L

() = K<P>§f‘ﬂ

and P is the external load applied to the column, K(P) is the rotational
spring stiffness dependent on the load P.

In this work the nondimensional rotational spring stiffness kp,(p) is a
quadratic function of p as it was assumed by Guran and Plaut (op. cit.)

ki (p) = k1 (L + Bp®) (2.15)

where Ky, is the initial nondimensional spring stiffness and [ is the stiffening
parameter.

For an unloaded column p = 0, which gives k;,(0) = kp,1. While consi-
dering the spring stiffness independent of p, B = 0 should be introduced in
(2.15), which gives kp,(p) = km1 = const.

Equation (2.7) expresses the axial displacement — force relation in the ith
column member. The inserting of these equations into boundary conditions
(2.12) for j = 0 gives a linear relationship between the axial forces Sjp in
each rod due to the external force P in the following form (¢ =1,2)

E; A;

%:mm+&@

(2.16)

For the column with rods of the same axial stiffness (E;A; = E3A4j) the force
510 = Sy = P/2.

The general solution to equation (2.8), after separation of the ¢ and 7
variables according to equation (2.5); is as follows (1 = 1,2)

wg)(f) = A; cosh(w;1€) + By sinh(ey1€) +Cii cos(6;1€) + Dy sin(G;1€) (2.17)

where

1 /1 1 /1
o = \/—Ekio + Zkzzo + wp; B = \/—2—]610 + Zkfo + wp;  (2.18)

By substituting equation (2.17) for ¢ = 1,2 into boundary conditions
(2.11) for j =1 one obtains the system of eight homogeneous equations with
the unknown integration constants Aj;;, Bj1, Ciy and Dy, (1 = 1,2). The




136 J.PRZYBYLSKI

determinant of matrix coefficient of the system must be equal to zero for a
nontrivial solution of the problem. This implies a relation between the exter-
nal load and the natural frequency, which is solved numerically afterwards. To
find the vibration mode for the calculated frequency the normalisation condi-
tion was applied w (1) = 1. The equation resulting from this condition is to
replace an a,rbltrary one from the above-mentioned system of eight equations.
Numerical solution to the new system of equations yields the values of con-
stants A;1, B, Cian and Dy, (1 =1,2) in (2.17) expressing the mode shapes
of both rods.

3. Amplitude-frequency relation for the conservative load
(case 7 =0)

The amplitude force parameter kio(7) existing in equation (2.9) depends
on the vibration amplitude. It is derived from conditions (2.12); with equations
(2.5); and (2.6); as well as condition (2.14) being taken into consideration.
This leads to the equations

Uopde [roui@ne  oud©)ye
K9 = £?) —ZAI;J:;AQO/[( wfalg ) ~( wag ) ] d¢

(3.1)
1
KO - = _ L0
L 12

On the grounds of the above equations it is easy to find that the amplitude
force parameters k( ) and k( ) differ from zero if the vibration modes of both
rods do not overlap each other or if the symmetric modes characterised by
the same amplitude for each rod and the opposite sign of the curvature do
not appear. These parameters were calculated numerically after finding the
analytical solution, i.e. when equations (2.17) for i = 1,2 were inserted into
equation (3.1);. The internal force parameter in each rod is now equal to

ki(T) = ki + 52192(3)(1 + cos 27) (3.2)

and is dependent on the value of the amplitude parameter .

The frequency correction parameter w( ) from equation (2.10) can be find
from the orthogonality condition prOposed by Keller and Ting (1966). For the
conservative load of the column (n = 0) equation (2.10) for each 4 = 1,2, is
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an inhomogeneous form of adequate equation (2.8) and both equations have
similar boundary conditions. Equation (2.10) will have a periodic solution if
and only if its right-hand side is orthogonal to all the solutions to adjoint
homogeneous equation (2.8). After separation of the £ and 7 variables ac-
cording to equations (2.5)2 and (2.6), the orthogonality condition is obtained
by multiplying equation (2.10) by E‘ifiwgf) (¢), integrating it over the range
< 0,1 > and adding with respect to 4 (i = 1,2). It is easy to find that the
integral of the left-hand side vanishes when conditions (2.11) for j = 1,3 are
taken into account. The right-hand side of equation (2.10) yields

(1)

(1)
2 [[40) - (PO e

(3.3)
1m/m O & +pods [ (O dé} =0

0

tw (2) B+ E2-72
PLAL + pr Ay

The nondimensional correction frequency w( )

AL+ poA
() 9(2) 274 PLAL T P24
( ) Elfl +E2.[2

is introduced here instead of w( ) (comp. equation (2.2)4) to get the reference
to the whole structure, not only to one of its members which is particulary
significant when one presents the numerical results. Between those parameters
the following relation holds

w® = Eil; prAi + pady

™ p;A; BrIy + Byl (34)
By inserting (3.1); into (3.3) one obtains
3 A1)
@) — BALZ2 () AL+ pady) -
“n 8(1+ p) Ay + Az (b1 + p2 ) (3.5)

(5" - (5" )

mmjwﬁwfﬁ+m@fmﬁwfa

The first correction frequency parameter w( ) takes non-zero values when
both rods of the column vibrate with different mode shapes. Having this pa-
rameter numerically calculated after solving analytically equation (3.3), the
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frequency according to (2.4)3 is
W = wp + 2wl + O(e) (3.6)

The effects brought about by the non-linearity in the system begin with
terms of O(e?) so the changes in the vibration amplitude controlled by &
(comp. equation (2.4);) affect the amplitude force parameter ng) and the
frequency correction parameter wg). The amplitude-frequency relation which
exists for non-linear problems can be exhibited for an arbitrary level of the
load if at least the first frequency correction parameter is calculated. It is
customary to restrict practical considerations to terms up to the second order
in expansion (2.4)3 for the problems of vibration at lower modes as it was
done by Evansen (1968) and Aravamudan and Murthy (1973). The higher
order terms need investigating the response at higher modes.

4. Amplitude-frequency relation for the nonconservative load
(case 0 <n<1)

For the nonconservative load (0 < 7 < 1) the boundary-value problem is
a non-self-adjoint one, so the formulation of the adjoint system is necessary
to obtain the amplitude-frequency relation. This procedure was applied by
Nemat-Nasser and Herrmann (1966), Plaut (1972) and Anderson (1975). For
the case of the Beck type problem, as which can be treated a column made
of two identical rods and subjected at its free end to a compressive follower
force, the Reut problem is the adjoint one.

This remark can be confirmed by realising the above described procedure
resulting from Keller and Ting’s orthogonality condition for the conservative
load. The left-hand side of equations (2.10), after separation of the £ and 7 va-

riables according to equations (2.5); and (2.6);, multiplication by E;l; w( )(f),
integration over the range < 0,1 > and addition with respect to : (t=1,2)
with the use of boundary conditions (2.11) takes the following form

L = By { (i) (©)le=1 -
[T lemr + wwi) )zt +p(1L+ wimuf (1] + (4.1)

D) [T @)t + wED) T (Olg=1 + 20+ @) O]}
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Fig. 2. Scheme of the deflected axis of rods of the two-member adjoint system

This left-hand side can be equal to zero if the terms in the square brackets
are equal to zero. It imposes two boundary conditions adequate to conditions
(2.11)g,7. The system fulfilling such conditions and conditions (2.11); s, (2.12)
and (2.13) is depicted in Fig.2. A single rod cantilevered column under the load
resulting from these conditions for 5 = 1 was experimentally and theoretically
examined by Sugiyama (1982), a column with spring supports along its span
by Qiu and Nemat-Nasser (1983).

Replacing w;;(€,7) by v;5(€,7) as well as k(1) by ¢ij(7) to denote
the lateral displacement and the dimensionless longitudinal force parameter
for the adjoint system, respectively, the set of its boundary conditions before
separating the space and time variables is as follows (j = 1,3,5,...)

(&
le=1 = v3; (€, T )15 1 (4.2)
11 (€, 7)le=0 + mv5] (€, 7)|e=0 — km(P)v1;(€,7)le=0 = 0
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V1€, T)|e=1 + /L’Ug(faf)k—l +p(1 + p)nvi(1,7) =0

oI (€, 7 ezt + ol (€, T)le=1 + p(L + p)vl(€,7)]g=1 = 0

and
u15(0,7) = ug;(0,7) =0 wii(L,7) = ug;(L,7)  §=2,4,... (43)
kiopr + kaope = p (4.4)
a1 (T)p1 + qaj(T)p2 = 0 j=2,4,... (4.5)

The governing equations for the adjoint problem are identical to equations
(2.1) and (2.2), but new expansions into the amplitude parameter ¢ must be
introduced (2 = 1,2)

N
Z /Uz(2_7 1) 5’ )+ O(5N+l)

N
gi(T) = kio + Y €¥ai005(7) + OV ) (4.6)
j=1

wﬁ—wm+2521 (WPNR 4 0N+
j=1

The form of the above expansions is determined by the properties of the
adjoint system. The static axial force Sjo (Sio = kioF;J;172%), which appears
in each member of the column due to the external load is the same for each
system. Further dynamic terms of the force depend on the vibration modes of a
particular system. These modes are different for each of the adjoint systems so
the dynamic terms k;(;)(7) from equation (2.4)2 and g;95)(7) from equation
(4.6)9, for any j =1,2,..., N, must differ from each other.

The eigenfrequency wp; from expansions (2.4)3 and (4.6)3 assumes the
same values for each system, as for the linear nonconservatively loaded ad-
joint systems (cf Nemat-Nasser and Herrmann, 1966; Anderson, 1975). This
frequency appears in linear equation (2.8) and the relevant ones for the adjoint
system, the solutions to which fulfil linear boundary conditions (2.11) for the
first system, and relevant (4.2) for the second one. For the geometrically non-
linear adjoint systems the frequencies wp; from equation (2.4)3 and wl from
equation (4.6)3 must take different values because their further terms, those
multiplyied by the amplitude parameter ¢ in adequate expansions, depend on
the vibration amplitude.
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Summarising: to obtain the frequency correction parameter wg‘;) from
equations (2.10) for the case of the nonconsevatively loaded column, those
equations, after separating the time and space variables, are multiplied by

EZ-Ji'uZ(ll ) (€), then integrated over the range < 0,1 > and added with respect
to 1 (1 =1,2). The left-hand side of the resulting identity takes the form

L= B { @) (©)le=1 -
(@) (©le=t + n5)) T €)le=1 + 2L+ o (1)] + (4.7)

~wf) (1) [@D) T Olemr + w5 )l + 2L+ ) @) (©)lem] )

and now is equal to zero because for the adjoint system boundary conditions
(4.2)¢,7 are fulfilled.
By integrating by parts the right-hand side

9 1
R=Y B [ [ @7 +oDuP D@ et =0 @9
=1 0

which is now equal to zero, and performing some algebraic transformations one

obtains the following expression for the correction frequency parameter w( )

1 ) (1) 5 (1) Sw (1) v (1)
g‘[ wza1£(§) Vo (5) (‘5) (‘5)] df

2 _ 3(p1 A1 + P2A2)k(0)
Wp ' = 2(1 + II’) 12 (1) 1)
p141 f’w )”11 (€) d€ + pa A2 fw ( )’1121 (€) dé

(4.9)

To calculate this parameter after analytical processing of equation (4.9) a
general solution for vﬁ)(f) must be applied at first. It has an analogous form
to equation (2.17) with new eight integration constants and identical values of
51, Bs1 expressed by (2.18). The integration constants are numerically found

from the obtained eight equations, when seven boundary conditions (4.2);_g,

)

and the normalisation condition v;;” =1 are satisfied.

5. Results of numerical analysis

For the needs of the numerical analysis certain assumptions were made
to limit the number of quantities to be taken into account. A column made
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of two bars of identical both the mass per unit length and the axial rigidity
(e.a. prA; = pads, E1A1 = Ey Ay, respectively) was examined. According to
the results presented by Przybylski et al. (op. cit.), the distribution of these
parameters between the column members is less influential on the vibration
frequency than the bending rigidity distribution. The sum of the bending
rigidity of both rods (EI = E\I} + E»ly) was taken as constant, but the
relation p = E3ly/(E1I1) changed its values within the range 0.1 < p < L.
The compound column for p = 1 becomes a geometrically linear system
because its rods always vibrate with the same absolute amplitude. As a result,
the force parameter kgg) from equation (3.1); and the frequency parameters
W from equations (3.3) and (4.9) are equal to zero.

The rotational spring support had stiffness either constant or increasing ac-
cording to the quadratic function described by equation (2.15). The stiffening
parameter was included within the range 0 < 8 < 0.3.

Table 1. Amplitude-frequency relation for the chosen values of the ampli-
tude parameter (k1 = 10, 8=0.0, p = 0.1)

W Wn
A p/Per = 0.3 p/Per = 0.6

7 =0.0 n=1.0 7 =10.0 7 =1.0
First | Second | First | Second | First | Second | First | Second
mode | mode | mode | mode | mode | mode | mode | mode

1 1 1.0001 1 1.0001 1 1.0001 1 1.0001
2 1 1.0007 1 1.0006 1 1.0008 1 1.0008
3 1 1.0108 1 1.0102 1 1.0191 1 1.0106
4 1 1.0725 1 1.0692 1 1.0836 1 1.0737
5 | 1.0001 | 1.0803 | 1.0002 | 1.0736 | 1.0002 | 1.0975 | 1.0001 | 1.0819
Two-rod Beck’s column Two-rod Reut’s column
First mode Second mode First mode Second mode

| =" | =

where A = ew(}(1)1/r,

To find the effect of the nonlinearity during vibration five values of the
small parameter related to the nondimensional radius of gyration, see Table 1,
were taken into account (r = /I/A). The first modes inrespectively of the
way of the column loading applications, and whether they result from boun-
dary conditions (2.11) + (2.14) for Beck’s type column, or boundary conditions
(4.2) + (4.5) for Reut’s one, have similar shapes, as shown in the table. As the
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deflections of each rod are almost identical, even though they were obtained
for p = 0.1, the quotient wy, /wy, for different amplitudes of the first modes
is equal to one (except for the last value of ¢). The effect of the nonlinearity
is visible for the second and further modes.

2 7

2.0

£=0.0; 77=0.0

1.0

IATEETTT BN EIT! PEEEETIT BEANRETITT MRS RETIT BECATRRTTI RSN TTIT
0.1 1 10 102 103 104 105 106

ml

Fig. 3. Divergence critical force versus initial spring stiffness (8 = 0) for the columns
with different bending rigidity ratios and loaded by the conservative force (n = 0)

All the results presented below were obtained for ewgll) (L)l/r = 4. Fig.3
illustrates the effect of the spring stiffness independent of the external load
(8 = 0) on the divergence critical force parameter for the columns with diffe-
rent relation between the bending rigidities of their rods, when they are loaded
by a conservative load (7 = 0). When the stiffness increases up to ky,1 = 100,
the critical load also increases; for k1 > 100 the critical load is independent
of the stiffness. It is worth noticing that for small values of the support stif-
fness, greater asymmetry in the bending rigidity of the rods corresponds to
greater values of the critical force. Then the pattern reverses and the critical
force assumes the smallest values for the column of the greatest rigidity ratio
# = 0.1. The same phenomenon is observed for the column which is loaded
by the partially follower force with the parameter 7 = 0.5, see Fig.4. The
differences in the divergence critical load for the support stiffness kn; > 10
are more significant in this case, and for k,,; = 10% the critical load for the
linear column (u = 1) is 1.76 of that for the column with p = 0.1.

In Fig.5 corresponding to the case of the follower load with 7 = 1 one
can notice different courses of the critical force curves. For this type of load
the system loses its stability via flutter and the critical load decreases when
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Fig. 4. Divergence critical force versus initial spring stiffness (8 = 0) for the columns
with different bending rigidity ratios and loaded by the conservative force (1= 0.5)
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Fig. 5. Flutter critical force versus initial spring stiffness (8 = 0) for the columns
with different bending rigidity ratios and loaded by the conservative force (n=1)
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the support stiffness increases up to k,,; = 10. For the linear column and for
the column with p = 0.5, further increasing of the support stiffness gives an
increase in the critical load. The maximum critical load parameter regarding
the linear column made of identical rods and is equal to 20.0509, which is the
value obtained by Beck (1953) for a single rod column. Greater asymmetry in
the bending rigidity ratio of the rods gives a smaller critical load. Thus the
best reinforcement of the single rod column would be obtained, if necessary,
by adding to it the second member of identical bending stiffness.

P.5)=20.0509
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Fig. 6. Flutter critical force versus spring stiffness when ky,(p) = km1(1 + 8p2) for
the linear column (x = 1.0) loaded by the follower force (n = 1)

The influence of the stiffening rate expressed by the stiffening rate constant
B on the critical flutter force for the column made of identical rods, when the
stiffness of the rotational supporting spring is the quadratic function of the
load K (p) = km1(1 + Bp?), is presented in Fig.6. The results correspond to
those obtained by Guran and Plaut (1993) for a tangentially loaded single rod
column. The stiffening rate may either decrease or increase the critical load;
for kmi > 5-10°% it has no effect on the critical load. For the column with
considerable asymmetry in the bending rigidity of its rods = 0.1, as shown
in Fig.7, an increase in the stiffening rate gives a decrease in the divergence
critical load if k1 < 2-10% if kpy > 2- 102 the value of the critical load
stabilises on the level of p, = 5.155.

To illustrate less significant effects of the supporting spring stiffening on

10 - Mechanika Teoretyczna
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Fig. 7. Flutter critical force versus spring stiffness when km(p) = km1(1 + Bp*) for
the non-linear column (g = 0.1) loaded by the follower force (n=1)
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Fig. 8. Divergence critical force versus spring stiffness when km(p) = km1(1 + %)
for the linear (= 0.1) and non-linear column (p = 0.1) loaded by the conservative
force (n=1)
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the divergence critical force for the conservatively loaded column (7 = 0.0),
two values of the stiffening rate constant were taken into consideration — one
for the column made of identical rods, and the other for the column with rods
having the rigidity ratio x = 0.1 - these results are grouped in Fig.8.
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Fig. 9. Divergence critical force versus spring stiffness when km(p) = km1(1 + Bp?)
for the linear (1 = 0.1) and non-linear column (u = 0.1) loaded by the partially
follower force (n=10.5)

Some of the obtained results of the critical force require considering toge-
ther with the natural frequency curves like in the case of the column loaded by
a partially follower force with the parameter 7 = 0.5, for which the bending
rigidity ratio was p = 0.1, see Fig.9.

The triangles and circles are the points for which the frequency curves are
plotted in successive Fig.10 and Fig.11, respectively. It can be seen in Fig.9
that an initial common gradual growth in the critical load for the increasing
value of the support stiffness for different B, changes to a sudden increase,
becoming even a jump in the critical load for the stiffening rate 8 = 0.3.
Such an unusual course of the curve for B = 0.0 results from the character
of the natural frequency curves drawn in Fig.10 with bolder lines for the first
frequency curves. The triangles on the y-axis (external load axis) are the
points where a particular frequency curve crosses this axis, when ky; = 1.1,
4.4 and 100, or is tangent to this axis which happens for k., = 6.6. At
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Fig. 10. Natural vibration curves for the non-linear column (u = 0.1) loaded by the
partially follower force (n= 0.5) for different values of the supporting spring
stiffness independent of the load (8 =0)
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Fig. 11. Natural vibration curves for the non-linear column (g = 0.1) loaded by the
partially follower force (n = 0.5) for different values of the supporting spring
stiffness independent of the load (8 = 0.3)
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these points the divergence instability occurs. The triangles marked on the
branches of the second frequency curves for k,; = 4.4, 6.6 are placed at
their convexity, so these are the points corresponding to the flutter instability.
It is worth noticing that the points of the flutter instability lie above the
points of the divergence instability for each value of the support stiffness. For
km1 €< 0.01,6.6 > the curves of the first frequency intersect the y-axis at
the points of their first critical force, whereas all the curves of the second
frequency cross that axis at one point p. = 5.610 of their second critical
force. If kypy1 = 6.6 the curves of the first and second frequency coincide
at the point of the divergence instability existing also for p. = 5.610. For
km1 € (6.6,10°% > all the first frequency curves go through the y-axis on the
level of their instability existing for the same critical force p. = 5.610.

The natural frequency curves presented in Fig.11 and obtained for the
supporting stiffness dependent on the external load with the stiffening constant
B = 0.3 are qualitatively similar to those shown in Fig.10. The only difference
congisted in the fact that for smaller values of ky,; the first frequency curves,
which change their curvature with the external load, intersect the y-axis at
the ordinate p. = 5.610.

6. Conclusions

On the basis of the perturbation method, the natural vibration and sta-
bility of the geomerically non-linear two-rod column subject to a partially
follower force, and supported by the spring with stiffness dependent on the
external load have been studied.

The adjoint system to solve the problem for the case of a nonconservative
load has been found. For the geometrically non-linear adjoint systems the
natural frequency assumes different values because the non-linear terms of the
frequency depend on the vibration modes, which are different for each system.

For the first mode of vibration the amplitude-frequency relation is almost
constant like in the linear problems due to similar deflections of the vibrating
rods. The effect of the nonlinearity becomes noticeable in the second and
higher modes.

The critical instability force of the system changes with the supporting
stiffness and the bending rigidity distribution between the column members.
This distribution has the smallest effect on the divergence critical load when
the column is under the conservative force.
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Independently of the bending rigidity relation, the supporting spring stif-
fening considerably changes the values of the critical forces. For the follower
loads there are ranges of the spring stiffness within which an increase in the
rate of the spring stiffening causes a decrease in the critical load.

The spring stiffening affects also the courses of the natural vibration curves.
For a partially follower load all the vibration curves corresponding to the
majority of the supporting spring stiffness values, intersect the load axis at
one point of the divergence instability.
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Wplyw sztywnoéci sprezyny podpierajacej geometrycznie nieliniowg
kolumne na jej drgania i statecznoé¢

Streszczenie

W pracy analizowane sa drgania i stateczno$¢ kolumny zlozonej z dwéch pretéw
i podpartej na sprezynie rotacyjnej, ktérej sztywnoéc jest stata lub zalezna od przy-
lozonego obcigzenia zewnetrznego. Poniewaz sila zewngtrzna jest czesciowo $ledzaca,
to kolumna moze tracié statecznosé przez dywergencje lub flatter. Celem znalezienia
relacji amplituda-czestoéé dla obcigzenia niezachowawczego znaleziono uklad sprze-
zony. Wykazano, ze liniowy skladnik rozwiniecia czgstosci drgaf obu ukladéw jest taki
sam, natomiast skladowe nielinowe s rézne. Przeprowadzono badania numeryczne,
na podstawie ktérych stwierdzono m.in., ze wzrost sztywnoéci sprezyny podpierajace]
kolumne moze obnizaé wartodé jej sity krytycznej.
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