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A new rheological model of polymeric materials has been proposed, ba-
sed on experimental data concerning creep of tensile samples. A mecha-
nical model of the material consists of four elements connected in series,
formulated by Hooke, Wilczysiski, Kelvin and Newton. Constitutive equ-
ations of rheology of the polymeric material have been formulated, both
in uncoupled and coupled form, with the analytical generating functions
well-fitting the experiments. A method for the identification of the ela-
stic, viscoelastic and viscous material constants, based on the creep of the
tensile samples, has been developed and computerised. The introductory
experiments have been carried out on samples made of POLIMAL 109
polyester resin and the results of identification of the material constants
have been given.

Key words: polymers, rheology, constitutive equations, combined nume-
rical and experimental methods

1. Introduction

Recent experiments showed that creep of polymeric materials contains
three main components, ie. elastic, viscoelastic and viscous ones, e.g.
Wilczynski (1968) and Ochelski (1997). The experiments also pointed out that
the viscoelastic component differs substantially from the Kelvin model,
Wilczyniski (1968).

In order to illustrate the proposed description of the polymeric material,
the classic mechanical models will be used. Three well-known rheological mo-
dels of polymeric materials, treated as isotropic solid media, are shown in
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Fig.la,b,c. The Hooke-Kelvin-Newton (H-K-N) model, presented in Fig.la,
consists of the Hooke, Kelvin and Newton elements, connected in series, cf
Wilczyriski (1984). The H-nK-N model, drawn in Fig.1b, consists of the Hooke
element (the elastic part), n elements formulated by Kelvin (the viscoelastic
part) and the Newton element (the viscous part), cf Wilczyniski (1984). The
H-W-N model, shown in Fig.1c, contains the Wilczynski element, described by
a fractional exponent generating function. That means the viscoelastic proper-
ties of the Wilczynski element vary in time. The use of the fractional exponent
generating functions to describe viscoelastic properties of polymers has first
proposed by Rabotnov (1966). Wilezytiski (1978, 1996) developed Rabotnov’s
approach via transforming the fractional exponent function series, weakly co-
nverging, to an integral form as well as via uncoupling the distortional and
volumetric creep. On the other hand, Wilczynski neglected pure viscous part
of the creep of polymers.
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Fig. 1. Rheological models of polymers

Taking into account the experimental data, one can observe that the H-K-
N model poorly fits the viscoelastic part of the creep of polymeric materials.
The H-nK-N model slightly better approximates that part of the creep, but
incorporates some qualitative errors. The H-W-N model states a substantial
progress as it fits well the viscoelastic part of the creep in a large time interval,
except for relatively shorter and longer times.

In this study, a new rheological model of polymeric materials will be pro-
posed, denoted by the H-W-K-N symbol, and illustrated in Fig.1d, in a me-
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chanical form. The viscoelastic strains result from the Wilczyriski and Kelvin
elements. This model will be formulated in the successive sections of this study.
The result of experimental verification of the model will be given as well.

2. Uncoupled constitutive equations of elasticity and rheology for
an isotropic material

Let z,y,2 denote directions of a Cartesian coordinate system, assumed
for an isotropic material. Constitutive equations of linear elasticity of a given
material can be written after uncoupling shear (distortional) and bulk (volu-
metric) strains. Using the matrix notation, the uncoupled equations have the
following form, e.g. Wilczynski and Klasztorny (2000)

£s = J,0 ey = Jpop (2.1)
where
€s = [5m: —EpyEyy — EpyEgz — Ebaeymewzagmy]-r
05 = [U:L'x — Oby Oyy — O0py Ozz — Op, Oyz, Umzaa'xy]_r
(2.2)
1 1
€y = g(gw:c + Eyy + €22) 0y = '3"(011:2 +oyy + Ozz)
1 1
Jg = — Jp = —
°T G T 3B
E E
G = — B =
2(1+v) 3(1 - 2v)
and where

Ejk - components of the strain tensor, j,k =z,y,z
Ojk — components of the stress tensor, j,k =x,y,z
Es - strain vector creating the deviator of the strain tensor
€y — strain defining the isotropic part of the strain tensor
O — stress vector creating the deviator of the stress tensor
op * — stress defining the isotropic part of the stress tensor
E,v,G,B - elasticity constants (Young’s modulus, Poisson’s ratio,

Kirchhoft’s modulus, Helmholtz’s modulus)
Js, Jp - shear and bulk elastic compliances.
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The following assumptions have been adopted:

e The polymeric material (a high-molecular plastic) is an isotropic body,
with linear elastic-viscoelastic-viscous properties.

e The mechanical model of the material is presented in Fig.1d.

e Processes of the deformation of the material are isothermal.

The uncoupled constitutive equations of rheology, describing an isotropic
material, can be formulated with the Boltzmann integral operators (cf Wil-
czynhski. 1996, 1997; Wilczyniski and Klasztorny, 2000)

E(t) = J(t) ® G5 (t) Ey(t) = Ju(t) ® Fu(2) (2.3)
where
Es = [gxm - gbagyy - gbagzz - gb: gyzangagmy]T
5‘5 = [Eww - aba a'yy - 5b, a:zz - 5b; 6yz7 53:?» 5zy]T (2-4)
~ 1. ~ ~ ~ 1. - -
b= g(Eww + Eyy + €22) 0y = g(awm + Oyy + Uzz)
and where _
Jy(t), y(t) - shear and bulk time-dependent compliances
Ejk(t) —  time-dependent components of the stress tensor,
J k=192
Fik(t) - time-dependent components of the strain tensor,
j) k=, Y,z
® — convolution operator
i - time.

The quantities &,(t), 8s(t), &(t), Tp(t) are defined in a similar way like
Es, O, €p, Op, With the following relationships

€5 = £5(0) os = 0(0)

ev = &5(0) ap = 5u(0)
3. Coupled (general) constitutive equations of linear elasticity
and rheology for an isotropic material

Uncoupled equations (2.1) can be rewritten in the form
e — Ae = J;(0 — Ao) Ae = JyAo (3.1)
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where
[ ez ] [ 0uz | [1 1 1.0 0 0]
Eqy Oyy 111000
O oo | o A lllT 11000
Eyz Oy 00 00O0TO
Egz Oz 0000O0O
| €ay | | Ouy | 00000 0]

Summing Eqs (3.1); and (3.1),, one obtains the general constitutive equations
of the elasticity of an isotropic material, in the form of coupled linear equations,
cf Daniel (1994), i.e.

e=Jo (3.2)
where i
[ J Jy Jp 0 0 0
o Ji1 S 0 0 0
o S J 0 0 0
J=J,(1-A)+ J,A = 3.3
s( )+ b 0 0 0 J, 0 0 ( )
0 0 J, 0
i 0 0 0 J |
and
2 1 1
J1=§J5+§Jb=—E'
(3.4)
1 1 v
Jy = -—-ng + ng = _E

Symbol | = diag(1,1,1,1,1,1) denotes the identity matrix.
In a similar way, Eqs (2.3) can be rewritten in the following form

E—AZ=J,® (¢ —Ad) AZ = J, @ AG (3.5)
with
J®@F-AF) =J, 0 (1-A)F) =J,(1-A) @5
(3.6)
Ty ®AF = AR &

2 - Mechanika Teoretyczna
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Tnserting Eqs (3.6) into Eqs (3.5) and summing Eqs (3.5); and (3.5)2, one
obtains the coupled (general) constitutive equations of rheology for an isotropic
material, in the form

Et)=J@t)®a(t) (3.7
where 3 )
Eyy Tyy
€= - g = _
Eyz Oyz
g:cz E.’BZ
| Eay | L Ozy |
and
(G B J 0 0 0]
Jo i o 00 0
~ . - Jy Jp 1 0 0 0
Iy = T0-A+ A= | 7 2
0 0 0 J; 0 0
0 0 0 J, 0
0o 0 0 0 0 J|
(3.8)
~ 2~ 1~ ~ 1~ 1~
Ji(t) = §Js(t) + ng(t) Jo(t) = —ng(t) + ng(t)
Equations (3.8)y give the following inverse relationships
To(t) = Ju(t) = Ja(2) Jo(t) = Ji(t) +2Ja(2) (3.9)

Hence, the shear and bulk time-dependent compliances are obtained as simple
transforms of two well-conditioned time-dependent compliances J1, Jo termed
here as directional compliances.

4. A new rheological model of polymeric materials

As Poisson’s ratio for polymeric materials is greater than 0.4, see Wilczyni-
ski (1996), the creep of a unidirectionally tensioned sample results in relatively
small bulk strains, when compared with the shear strains (see Eqs (2.2), (2.4)).
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Time histories of the bulk creep of the polymeric samples exhibit some irregu-
larities, as mentioned in point 8, hence they are difficult for direct analytical
description. On the other hand, the time histories of the directional creep
Exzz(t), Eyy(t) are monotone and well measurable, thus they have been selected
for direct approximation. The generating functions are formulated for the di-
rectional time compliances J (%), Jo(t). The shear and bulk time compliances
can be calculated from simple Eqs (3.9).

The directional compliances, occurring in the compliance matrix ], corre-
sponding to the H-W-K-N rheological model, have the following form

t t
Ji(t) = «]i(1+wi/[7idsi(t—’l9)+(1—’)’z')Fi(t—’ﬂ)] d19+ﬂz-/d19) i=1,2
0 0

(4.1)
where

/Py - fractional exponent functions, related to the first/second
directional compliance (load history functions for the W
element)

Fi/F,  ~ exponent functions, related to the first /second directional
compliance (load history functions for the K element)

wi/wy - viscoelastic constants determining the first/second long-
lasting compliance

Y/v2 -~ fractions determining the contribution of the elements W
and K to the total viscoelastic strains, related to the
first /second directional compliance

T'/73' ~ retardation times of the Newton element, related to the

first /second directional compliance, with

i = = i=1,2 (4.2)

The load history functions are defined by the following formulae (see Wilczyni-
ski, 1978, 1997; Wilczynski and Klasztorny 2000)

?;(t) = ai/e_“’ftﬁfli(é) d Fi(t) = rze™"* 1=1,2 (43
0

where (i =1,2)
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A sin p; gri—t
i =
T 1+ 26Hi cosmp + E2H
£ pi+€ (4.4)
1 1
o = — 0<pi<1 Ki =
i = i i TiK
with
T1/T2 _  retardation times of the W element, related to the
first /second directional compliance
p1/p2  — fractions defining the fractional exponent functions, rela-
ted to the first/second directional compliance
¥ /K - retardation times of the K element, related to the

first /second directional compliance.

Summing up, the H-W-K-N model of a polymeric material is described
by 14 material constants, i.e. 2 elasticity constants (F,v), 10 viscoelasti-
city constants (w1, wa,71,72: 71,72, b1, }Lg,TlK , 7<) and 2 viscosity constants
(', 73)-

5. Creep of polymeric materials

The material constants that describe the H-W-K-N model will be identified
from simple experiments concerning the creep of samples in pure tension. The
experiments are carried out on cylindrical samples. Each sample is under a
uniform normal stress ogg = const, as shown in Fig.2a. The longitudinal and
transverse strains, £zz(t) and &yy(t), are measured for t > 0.

The remaining components of the stress and strain tensor satisfy the fol-
lowing conditions

Oyy = 0zz =0 awyzayz=am=0
Eyy(t) = E22(1) Eay(t) = Eya(t) = Ezz(t) =0

Tnserting Eqs (5.1) into Eqs (3.7), taking into consideration Eqgs (4.1) =+ (4.4),
one obtains the following functions describing the directional strains

(5.1)

gwm(t) = [1 + w1<p1(t) + ﬂlt]em
(5.2)

Eyy(t) = [L+ waa(t) + Batleyy
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Fig. 2. Longitudinal and transverse creeps of a tensile polymeric sample

where (i =1,2)

¢ t
oilt) = [t —9) a0+ (1- ) [ B - ) ar =
° 0 (5.3)
¢
= w[t- O/eXp(—Tft)Ai(f) de] + (1 = %) [1- exp(;—;ﬁ)]
are the directional creep functions. Eqs (5.3) can be rewritten in the form
¢
oitt) = 1= [[exp( ) aute) de - (1 - ) (k) i=12 (4

0

Subsequent components in Eqs (5.2) correspond to elements H W, K,N
in the material model. Hence, the total strains contain the elastic, viscoelastic
and viscous parts, i.e.

gzm(t) =Egz + g;;(t) + gl:;x(t)

Eyy(t) = eyy + (1) + &, (1)
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where
Exzx = J10zz g;g(t) = Ewww1<P1(t) ?:";w(t) = Egg1l

Eyy = J204z Ens () = eyywapa(t) Epy(t) = eyyPat

6. An algorithm for identification of the material constants

In the experiment concerning the creep of a sample in pure tension, the
directional strains &z;(t), &yy(t), t €< 0,t" > are measured in a high-
density discrete set of time instants. The elasticity constants can be estimated
experimentally, using the classic formulae resulting from Eqs (3.2), (3.4) and
(6.1), i.e.

g = 2= y=
Exx Exx
The general shapes of the creep functions &z4(t), €55 (1), Erq(t), Eyy(t), &g (t),
&, (t) are shown in Fig.2b. The time histories of the directional creep strains
contain the VFI zone, in which the pure viscous flow of the material decides
about the variation in time (Fig.2b). The experiments show that the direc-
tional strains in the VFI zone are approximately linearly dependent on time.
From Egs (5.2), (5.4) one obtains the approximate formulae t €< ¢/, >

gxw(t) ~ gww(l + wl) + Egurt
(6.1)
since ¢;(t) = 1, @a(t) = 1 for t — oo.

The experimental strains in the VFI zone are approximated with straight
lines, i.e.

Ezz(t) = A1 + Bt gyy(t) = Ay + Bt te< t’, "> (6.2)
The simplest estimation results in the directional coefficients calculated from
the formulae (Fig.2b)

By = E3g ~ Exa B _ EyyEyy
V= Ty 2 L

and the coefficients A;, Ay derived from the condition of collocation at the
termined instant

A1 = Egz - Blt" A2 = €Zy - th"
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Comparing Eqs (6.1) and (6.2), one obtains the following formulae for the
second group of the material constants

A1 A2

Exx Eyy
TN— 1 . Exx 7_N'_ 1 _ Eyy
1 — 5 — 45 2 T a4 T 4

B B Ba By

The formulae for the experimental creep functions result from Eqs (6.2)
and have the following form

1 & (t

o) = [0

1 &y (t)
o [ vy

~1-pit] w5(t) = — [~ — 1 - Byt

The material constants -y, 71, p1, & can be derived from the experimental
curve ¢f(t), whereas the constants +yy, 79, po, 7K — from the experimental
curve @§(t). The optimisation problem is nonlinear and, in general, can only be
solved numerically. The authors propose an algorithm of systematic searching,
in the set of four decision variables in each optimisation problem, with the
optimum conditions

n
Hy =} |¢i(te) = 9§ (t)] = min i=1,2
k=1
where  ;(t), i = 1,2 denote the theoretical (approximate) creep func-

tions, calculated from Eqs (5.4). The collocation instants t1,t9, ..., b, must
be distributed uniformly over the logarithmic scale, within the time interval
< log(0.1 [min]), log#" >.

7. Separation of the shear and bulk strains

According to Eqs (2.2), (2.4), (5.1) one obtains

- 1, ~ 1
Ep = _(51::13 + 25yy) Op = 50zg
3 3
~ ~ ~ - 1. -
Egx — Ep = g(em: - Eyy) Eyy — Ep = _'?;(593:3 - 5yy)

2
Ogg — Op = go'wa: Oyy — Op = _§U:Ew
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i.e. the first three equations in matrix equation (2.3); are proportional one to
another, and the remaining three equations are trivial. The considerations can
be then limited to the following equalities

2 2 ~ 2 _ ~
1 1 ~ 1. ~
Ob = 30 €p = §(E” + 2e4y) &(t) = §[Emw (t) + 284y ()]

The symbols €;, €, denote respectively the shear and bulk elastic strains,
whereas &(t), £,(t) — the shear and bulk rheological strains.

Inserting Eqs (4.1) into Eqs (3.9), one obtains the following final formulae
describing the shear and bulk time-dependent compliances

t

t
Fo) = Js[1+/4'>s(t _9) dz9+ﬁs/dz9]
0

0
t

t
Gt = h1+ /@b(t ~ ) d19+ﬂb/dq9]
0 0

where
Jy=Jh - Jp = Ji1 +2J;
Jiw
B, (t) = ————[nP1(t) + (1 — 1) F1(8)] +
Ji1— Jo
J2w2
- [Ya@a(t) + (1 — y2) Fa ()]
Ji— Jo
J1w1

Py(t) = m[’h@l(t) + (1 —m)FR@)] +

2J2w2
— 1 —
+J1 T 27, [v2Pa(t) + (1 — 72) Fa(t)]
g, = DB 2B g = DL+ 20
) Ji= ' J1+2Jy

The generating functions @4(t), P(¢) are related to the shear and bulk strains
of the bielement W-K, while (3, 8 are the shear and bulk viscosity coefficients,
corresponding to the Newton element in the H-W-K-N material model.
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8. An example of the identification of the material constants

The experiments have been carried out on three cylindrical samples, made
of the POLIMAL 109 polyester resin, prepared in accordance with the standard
procedures. The computer aided experiments have been realised in Laboratory
of Strength of Materials, Military University of Technology, Warsaw'. The
samples were under normal stress oy, = 0.3R,, = 10.5 MPa, where R,, is
the material strength in tension. The experiments have been conducted on
the DST 5000 creep-testing machine, in constant temperature of 18°C, using
10 mm long bonded wire strain gauges. The time histories of the longitudinal
and transverse strains were measured in the discrete set of time instants from
the interval ¢ €< 0,60000min >. The static stress level was reached linearly
during 1 minute, and from that moment the strains were registered.

0.010

&(6) Polimal 109
a0
0
-0.005
0 60000

t [min]

Fig. 3. Experimental time histories of longitudinal and transverse strains e, (®),
€yy(t) for the tensile sample made of the POLIMAL 109 polyester resin

The results of the experiments and fitting the H-W-K-N model to the
real data are presented in Fig.3 + Fig.5, for the selected sample. The experi-
mental, longitudinal and transverse strains versus time are plotted in Fig.3.
Fig.4a,b show the viscoelastic creep curves, both the experimental and theore-
tical, respectively for the longitudinal and transverse strains. Fig.5 positively
verifies the H-W-K-N model, as the shear and bulk strain curves, both the

'Dr. Roman Gieleta, from Military University of Technology, Warsaw, had made
the samples and performed the experiments.
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Fig. 4. Creep function 1 and ¢ for the sample made of the POLIMAL 109
polyester resin, in a semi-logarithmic scale; E —experiment, A — approximation with
the H-W-K-N model
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Fig. 5. Shear ¢, and bulk ¢, creep for the tensile sample made of the
POLIMAL 109 polyester resin, in a semi-logarithmic scale; E — experiment,

A - approximation with the H-W-K-N model
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experimental and theoretical ones, are very closed. The creep of the remaining
samples and their approximation were of similar character and the same level
of accuracy.

The identification algorithm was programmed on a PC. In each optimi-
sation problem only one minimum was detected, and low sensitivity of the
optimum conditions was found. Systematic searching with steps A~y; = 0.01,
Ap; = 0.01, Ar; = 0.1h, A7/ = 1h, i = 1,2 yielded the functions 05 (t),
¢5(t) with extremely high accuracy. The relative error measuring the devia-
tion of the theoretical curve from the experimental one was 2.0% for ¢ (t)
and 2.5% for ¢2(t), provided that 23 collocation points were used.

The results of the identification of the material constants, based on the
selected sample, are collected below:

E = 3.58 GPa v =0.423

71 = 0.43 w; = 1.62 m=41h
p1 = 0.48 8 =115h

v2 = 0.45 wy = 2.08 79 =13h
p2 = 0.55 8 =158 h

¥ =2270 h ' =2375h

9. Conclusions

The authors formulated a new rheological model of polymeric materials,
composed of the Hooke, Wilczynski, Kelvin and Newton elements. The Wil-
czynski element is described by fractional exponent generating functions, whe-
reas the remaining elements are understood classically, i.e. the Kelvin and
Newton elements are expressed by ordinary exponent generating functions.

The H-W-K-N model, proposed in the study, is governed by the consitutive
_equations formulated in both the uncoupled and coupled form. The generating
functions have been formulated analytically for the directional compliances.
The generating functions for the shear and bulk compliances are then derived
by symbolic transforms of the directional functions.

The introductory experiments show that the H-W-K-N model of polymers
predicts approximate time-dependent strains closely to the experimental va-
lues. The computer algorithm for the identification of the material constants,
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based on monotone and easy-measurable directional strains, appeared to be
very stable.

The main advantages of the material model proposed in the study are as
follows:

e very good approximation of realistic strains of polymeric materials, wi-
thin the considered time interval

e possibility of determining, in an analytical way, Laplace’s transforms of
the generating functions.

The last advantage enables application of the H-W-K-N model to predict
rheological properties of fibrous polymeric composites, Klasztorny, Wilczynski,
Witemberg-Perzyk (2000).

A. Appendix — description of functions &(t), A(£), ¢(t) related to
the fractional exponent function

Each component function in the pair @1(t), @(t) is formulated in the same
form. The pairs A1(€), A2(€), and @1(t), pa(t) have analogous character.
Hence, when analysing these functions one can neglect the subscripts.

The functions of the load history, retardation time distribution and creep
are described by the following formulae (see Wilczynski, 1978, 1996; Wilczyn-
ski and Klasztorny, 2000)

o0 1

_ —af —

P(t) = aO/e LEA(E) déE a= -
Ag) = Sy . O<p<l

7 14 2¢kcosmp + E2H
plt) =1~ [ EA(e) de
0

where 7 is the retardation time describing the comparable Kelvin model.
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These functions satisfy the following conditions

&(t) >0 for t>0 %g% &(t) = 00 tl_l}glo P(t)=0
A€) >0  for £30 [ ae=1 lim A(¢) = o0
0
¢(0) =0 p(oo) = lim o(t) =1
(A1)

Formulae (A.1) give theoretically an infinite value of the initial creep velo-
city, i.e.

p0) = 22 = o [emeSea(e) dt = a1
0

$(0) = lim &(t) = oo

On the other hand, the velocity «(t) drops rapidly to a small value after
passing the singular point ¢ = 0.

The function A(¢) = A(,p) only depends on the constant . After
introducing the dimensionless parameter 7 = at = t/7, related to time, one
can analyse the normalised load history function

oo
Pu(np) = [ A, ) dg (A2)
0
and the creep function
oo
plnw) =1~ [ 1A, ) d¢ (A3)
0
with 1
o(t) = ~Pu(n, p) p(t) = o(n, 1) t=nr
Assuming p =1, one obtains the comparable Kelvin model, for which
A(,1) =6(¢ - 1) Pu(n,1) =e7" p(n,1)=1-e7"

where ¢ is Dirac’s delta function.

Diagrams of the functions A(¢, p), @y (n, 1), @(n, u) for the selected values
of the fraction u are presented in Fig.6 + Fig.8.

Integrals (A.2), (A.3) were calculated using the Gauss quadratures. The
interval £ €< 0, 00) was divided into appropriate subintervals. The singularity
in the point £ = 0 has been eliminated classically.
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Model reologiczny materialéw polimerowych oraz identyfikacja jego
parametréw

Streszczenie

Zaproponowano nowy model reologiczny materialéw polimerowych, oznaczony
symbolem H-W-K-N. Model mechaniczny materialu sklada si¢ z czterech elemen-
téw polaczonych szeregowo, sformulowanych przez Hooke’a, Wilczyiskiego, Kelvina
i Newtona. Sformulowano réwnania konstytutywne reologii opisujace model H-W-
K-N, w postaci niesprzezonej i sprzezonej, z funkcjami tworzacymi dobrze aproksy-
mujacymi eksperymentalne przebiegi pelzania. Opracowano metodg identyfikacji 14
statych materialowych, opisujacych model H-W-K-N. Algorytm identyfikacji zapro-
gramowano w jezyku PASCAL. Podano wyniki identyfikacji stalych materialowych
zywicy poliestrowej (POLIMAL 109), bazujace na pomiarach pelzania wzdluznego
i poprzecznego prébek przy rozcigganiu jednokierunkowym.
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