PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and experimental analysis of biomechanics of three lumbar vertebrae

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A three-dimensional numerical model of the human spine including three vertebrae of the lumbar spine (L1, L2, L3) has been built using the ANSYS 5.2 FEM program. Mechanical properties of different elements of the spine have been taken into account, i.e., cortical bone, cancellous bone, posterior elements, etc., in the model. The model allows one to analyse spine displacement under various static and dynamical loads acting on the vertebral structure, as well as it enables one to select proper implants. For verification purposes, the numerical analysis results having the form of displacements under different loads have been compared with the in-vitro experiment results obtained by other authors. In addition, a test stand allowing for experimental investigation of displacements of different elements of the spine has been constructed. In the investigation into stiffness, the artificial vertebrae L1, L2, L3 have been used. A good agreement between tje results obtained from the numerical analysis and experiments has been achieved.
PL
Wykorzystując komercyjny program ANSYS 5.2 oparty na MES, stworzono trójwymiarowy model numeryczny kręgosłupa ludzkiego składający się z trzech kręgów lędźwiowych (L1, L2, L3). W modelu uwzględniono własności mechaniczne poszczególnych elementów kręgosłupa (kość korowa, gąbczasta, wyrostki, pierścienie włókniste, jądro). Model ten pozwala na analizowanie przemieszczeń zachodzących w układzie kręgosłupa pod wpływem różnych obciążeń statycznych i dynamicznych oraz umożliwia badanie i dobieranie różnego rodzaju implantów. W celu zweryfikowania modelu numerycznego porównano otrzymane wyniki w postaci przemieszczeń, uzyskane pod wpływem różnego rodzaju obciążeń, z wynikami uzyskanymi przez różnych autorów w testach biomechanicznych na preparatach biologicznych in-vitro. Okazało się, że wyniki te są w dużym stopniu zbieżne. W celu dodatkowej weryfikacji stworzonego modelu numerycznego zostało zaprojektowane i wykonane stanowisko umożliwiające badanie in-vitro przemieszczeń fragmentu kręgosłupa ludzkiego. W badaniach stabilności wykorzystano sztuczny model kręgów L1, L2, L3. Wyniki, które uzyskano w modelowaniu numerycznym są bardzo zbliżone do wyników uzyskanych podczas testów na tym stanowisku.
Słowa kluczowe
Rocznik
Tom
Strony
413--434
Opis fizyczny
Bibliogr. 54 poz, il., wykr., tab.
Twórcy
autor
  • Division of Automatic and Biomechanics, Technical University of Łódź
  • Division of Automatic and Biomechanics, Technical University of Łódź
Bibliografia
  • 1. ABUMI K., PANJABI M.M., DURANCEAU J., 1989, Biomechanical Evaluation of Spinal Fixation Devices. Part III. Stability Provided by Six Spinal Fixation Devices and Interbody Bone Graft, Spine, 14, 11, 1249-1255.
  • 2. ASHMAN R.B., BECHTOLD J.E., EDWARDS W.T., JOHNSTON II C.E., MCA¬FEE P.C., TENCER A.F., 1989, In-Vitro Spinal Arthrodesis Implant Mechanical Protocols, J. Spin Disord., 2, 274-281.
  • 3. ASHMAN R.B., BIRCH J.G., BONE L.B., CORIN J.D., HARRING J.A., JOHN-STON II C.E., RITTERBUSH J.F., ROACH J.W., 1988, Mechanical Testing of Spinal Instrumentation, Clin. Orthop., 227, 113-125.
  • 4. ASHMAN R.B., GALPIN R.D., CORIN J.D., JOHNSTON II C.E., 1989, Biomechanical Analysis of Pedicle Screw Instrumentation Systems in a Corpectomy Model, Spine, 14, 1398-1405.
  • 5. ASHMAN R.B., 1994, Implant Testing, in S.L. Weinstein (edit.) The Paediatric Spine, Principles and Practice, New York, Raven Press, Ltd, 121-137.
  • 6. ASHMAN R.B., 1993, Mechanical Testing of Spinal Instrumentation, Seminars in Spine Surgery, 5, 73-80.
  • 7. AWREJCEWICZ J., ANTOSIK T., 1997, Investigation of the Human Spine Stability Using Implants in its Lumbar Part by Means of Finite Element Method, Proceedings of the 4th Conference on Dynamical Systems - Theory and Applications, SA. LODART, Lodz.
  • 8. AWREJCEWICZ J., ANTOSIK T., 1998, Modelling a Segment of the Lumbar of the Human Vertebral Column by Means of Finite Element Method, Proceedings of the Fourth World Congress on Computational Mechanics, IACM, Buenos Aires.
  • 9. BOCHENEK A., REICHER M., 1990, Human Anatomy, Vol. I, State Medical Publishers, Warsaw.
  • 10. BOZIC K.J., KEYAK J.H., SKINNER H.B., BUEFF H.U., BRADFORD D.S., 1994, Three-Dimensional Finite Element Modelling of a Cervical Vertebra: An Investigation of Burst Fracture Mechanism, J. Spinal Disorders, 7, 102-110.
  • 11. BRODKE D.S., DICK J.C., KUNZ D.N., MCCABE R., ZDEBLICK T.A., 1997, Posterior Lumbar Interbody Fusion. A Biomechanical Comparison, Including a New Threaded Cage, Spine, 22, 1, 26-31.
  • 12. CUNNINGHAM B.W., KOTANI Y., MCNULTY P.S., CAPPUCCINO A., MCAFEE P.C., 1997, The Effect Spinal Déstabilisation and Instrumentation on Lumbar Intradiscal Pressure, Spine, 22, 22, 2655-2663.
  • 13. DICK J.C., ZDEBLICK T.A., BARTEL B.D., KUNZ D.N., 1997, Mechanical Evaluation of Cross-Link Designs in Rigid Pedicle Screw Systems, Spine, 22, 4, 370-375.
  • 14. EPPINGER R.R\ KLEINBERGER M., 1994, Finite Element Modelling and Analysis of Thorax/Restraint System Interaction, Fourteenth International Technical Conference on the Enhanced Safety of Vehicles, May 23-26.
  • 15. EVENSON R., BUDNEY D., MOREAU M., RASO V.J., 1990, A Transducer for Measuring Motion within a Vertebra, Spine, 15, 577-580.
  • 16. GLAZER P.A., COLLIOU O., KLISCH S.M., BRADFORD D.S., BUEFF H.U., LÖTZ J., 1997, Biomechanical Analysis of Multilevel Fixation Methods in the Lumbar Spine, Spine, 22, 2, 171-182.
  • 17. GLOSSOP N., HU R., 1997, Assessment of Vertebral Body Motion During Spine Surgery, Spine, 22, 8, 903-909.
  • 18. GOEL V.K., LIM T.H., GWON J., CHEN J.Y., WINTERBOTTOM J.M., PARK J.B., WEINSTEIN J.N., AHN J.Y., 1991, Effects of Rigidity of an Internal Fixation Devices. A Comprehensive Biomechanical Investigation, Spine, 16, supple 3, 155-161.
  • 19. GOEL V.K., MONROE B.T., GILBERTSON L.G., BRINCKMANN P., 1995, Interlaminar Shear Stresses and Laminar Separation in a Disc, Spine, 20, 6, 689-698.
  • 20. GURR K.R., MCAFEE P.C., SHIH C, 1988, Biomechanical Analysis of Po¬sterior Instrumentation Systems After Decompressive Laminectomy, J. Bone Joint Surg., 70-A, 680-691
  • 21. GURR K.R., MSAFEE P.C., SHIH C, 1988, Biomechanical Analysis of Anterior and Posterior Instrumentation System After Corpectomy. A Calf-Spine Model, J. Bone Joint Surg., 70-A, 1182-1191.
  • 22. HEDMANT.P., FERNIE G.R., 1997, Mechanical Response of the Lumbar Spine to Seated Postural Loads, Spine, 22, 7, 734-743.
  • 23. HOSHIJIMA K., NIGHTINGALE R.W., Yu J.R., RICHARDSON W.J., HARPER K.D., YAMAMOTO H., MYERS B.S., 1997, Strength and Stability of Posterior Lumbal- Interbody Fusion, Spine, 22, 11, 1181-1188.
  • 24. KANEDA K., 1991, Anterior Approach and Kaneda Instrumentation for Lesions of the Thoracic and Lumbar Spine. Chapter 38, Textbook of Spinal Surgery, edit. K.H. Bridwell, R.L. Dewald, Philadelphia, J.B. Lippincott, 959-990.
  • 25. KENNETH A.M., MCGOWEN D.P., FREDRICKSON B.E., FALAHEE M., YUANH.A., 1990, A Biomechanical Investigation of Short Segment Spinal Fixation for Burst Fractures with Varying Degrees of Posterior Disruption, Spine, 15, 6, 470-478.
  • 26. LEE C.K., LANGRANA N.A., YANG, S.W., 1983, Lumbosacral Spine Fusion. A Biomechanical Study, Spine, 6, 574-581.
  • 27. LIMING M., VOO PH.D., SRIRANGAM KUMARESAN M.S., NARAYAN YOGA-NANDAN PH.D., FRANK A., PINTAR PH.D., JOSEPH F., CUSICK M.D., 1997, Finite Element Analysis of Cervical Facetectomy, Spine, 22, 9, 964-969.
  • 28. MAUREL N., LAVASTE F., SKALLI W., 1992, Modélisation tridimensionnelle par elements finis du rachis cervical, Rachis, 4, 3, 159-168.
  • 29. MCMINN R.M.H., HUTCHINGS R.T., PEGINGTON J., ABRAHAMS P., 1994, Coloured Atlas of Human Anatomy, Solis, Warsaw.
  • 30. NACHEMSON A., 1976, The Lumbar Spine an Ortophaedic Challenge, Spine,I,15.
  • 31. NAGEL D.A., EDWARDS W.T., SCHNEIDER E., 1991, Biomechanics of Spinal Fixation and Fusion, Spine, 16, supple 3, 151-154.
  • 32. NASCA R.J., LEMONS J.E., WALKER J., BATSON S., 1990, Multiaxis Cyclic Biomechanical Testing of Harrington, Luque, and Drummond Implants, Spine, 15, 15-20.
  • 33. NATALI A., MEROI E., 1990, Non-Linear Analysis of Intervertebral Disc under Dynamic Load, Journal of Biomechanics Engineering, 112, 358-363.
  • 34. NATARAJAN R.N., KE J.H., ANDERSON G.B., 1994, A Model to Study the Disc Degeneration Process, Spine, 19, 3, 259-265.
  • 35. PANJABI M.M., ABUMI K., DURANCEAU J., CRISCO J.J., 1988, Biomechanical Evaluation of Spinal Fixation Devices: II. Stability Provided by Eight Internal Fixation Devices, Spine, 13, 10, 1135-1140.
  • 36. PANJABI M.M., 1988, Biomechanical Evaluation of Spinal Fixation Devices: I. A Conceptual Framework, Spine, 13, 10, 1129-1134.
  • 37. PANJABI M.M., DURANCEAU J.S., OXLAND T.R., BOWEN C.E., 1989, Multi-directional Instabilities of Traumatic Cervical Spine Injuries in a Porcine Model. Spine, 14, 1111-1115.
  • 38. PUNO R.M., BECHTOLD .I.E., BYRD III J.A., WINTER R.B., OGILIVE J.W., BRADFORD D.S., 1991, Biomechanical Analysis of Transpedicular Rod Systems, A Preliminary Report, Spine, 16, 973-980.
  • 39. ROBIN S., 1992, Modélisation Biomecanique de la colonne vertébrale lombaire. These de doctorat en mécanique, ENSAM Paris, pp 85.
  • 40. SAITO T., YAMAMURO T., SHIKATA J., OKA M., TSUTSUMI S., 1991, Analysis and Prevention of Spinal Column Deformity Following Cervical Laminectomy, Pathogenetic Analysis of Post Laminectomy Deformities, Spine, 16, 494-502.
  • 41. SANDERS J.O., SANDERS A.E, MORE R., ASHMAN R.B., 1993, A Preliminary Investigation of Shape Memory Alloys in the Surgical Correction of Scoliosis, Spine, 18, 1640-1646.
  • 42. SHIMANDLE J.H., BODEN S.D., 1993, Spine Update. The use of Animal Models to Study Spinal Fusion, Spine, 19, 1998-2006.
  • 43. SHIRADO O., KANEDA K., TADANO S., ISHIKAWA H., MCAFEE P., WARDEN K.E., 1992, Influence of Disc Degeneration on Mechanism of Thoracolumbar Burst Fractures, Spine, 17, 3, 1082-1086.
  • 44. SHIRADO O., ZDEBLICK T.A., MCAFEE P.C., WARDEN K.E., 1991, Biomechanical Evaluation of Methods of Posterior Stabilisation of the Spine and Posterior Lumbar Interbody Arthrodesis for Lumbosacral Isthmic Spondylodesis. A Calf-Spine Model, J. Bone Joint Surg., 73-A, 518-526.
  • 45. SILVA M.J., KEAVENY T.M., HAYES W.C., 1997, Load Sharing between the Shell and Centrum in the Lumbar Vertebral Body, Spine, 22, 2, 140-150.
  • 46. SIMON B.R., Wu J.S.S., CARLTON M.W., EVANS J.M., RAZARÍAN L.E., 1985, Structural Models for Human Spinal Motion Segments Based on a Poro-slastic View of the Intervertebral Disc, J. Biomechanics Eng., 107, 327-335.
  • 47. SMIT T.H., ODGAARD A., SCHNEIDER E., 1997, Structure and Function of Vertebral Trabecular Bone, Spine, 22, 24, 2823-2833.
  • 48. SPILKER R.L., DAUGIRDA D.M., SCHULTZ A.B., 1984, Mechanical Response of a Simple Finite Element Model of an Intervertebral Disc under Complex Loading, J. Biomechanics, 17, 2, 103-112.
  • 49. TEO E.C., PAUL J.P., EVANS J.H., 1994, Finite Element Stress Analysis of a cadaver cervical Vertebra, Med. Biol. Eng. Comput., 32, 236-238.
  • 50. YANG K.H., KING A.I., 1984, Mechanism of Facet Load Transmission as a Hypothesis for Low-Back Pain, Spine, 9, 6, 557-565.
  • 51. YERBY S.A., EHTESHAMI J.R., MCLAIN R.F., 1997, Offset Laminar Hooks Decrease Bending Moments of Pedicle Screws During in Situ Contouring, Spine, 22, 4, 376-381.
  • 52. YOGANANDAN N., KUMARESAN S., Voo L.M., PINTAR F.A., 1996, Finite Element Modelling of the C4-C6 Cervical Spine Unit, Med. Eng. Phy.
  • 53. ZAGRAJEK T., 1990, Biomechanical Modelling of Human Spinal Segment using the Method of Finite Elements, Scientific Works of Warsaw University of Technology, 140.
  • 54. ZDEBLICK T.A., FOLEY K.T., 1993, The Use of the ZPLATE-ATL TM Systems for the Management of Thoracolumbar Burst Fractures and Tumor, Spinal Frontiers, 1, 4-10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0001-0249
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.