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The paper is concerned with the problem of vibration damping in a tor-
sional system by application of dynamic eliminator equipped with pie-
zoelectric elements. Piezoelectric elements are capable of changing their
overall dimensions when exposed to external electric field. If shaped in
the form of rings and placed side by side they create a cylindrical shell
the radius of which can be controlled by a voltage signal according to
the converse longitudinal piezoelectric effect. The dynamic vibration eli-
minator with such a piezoelectric cylinder mounted in the space filled
up with a viscous medium coaxially to the internal cylindrical surface
grinded ipside of the eliminator housing can adjust its damping coeffi-
cient by changing dimensions of the oil gap by applying the voltage to
the piezoelectric elements. This property enables the eliminator to adapt
its damping to variable excitation frequency so that the optimum dam-
ping constant can be obtained. This protects the vibrating system from,
what is characteristic for typical dynamic eliminators, disadvantageous
growth of the vibration amplitude outside of the resonant zones.
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1. Introduction

Recently much attention has been paid to the problem of application of
piezoelectric materials to mechanical systems in which the piezoelectrics are
supposed to reduce mechanical vibration or stabilise such systems. Numerous
examples of active damping, mainly of transverse vibration in beam-like sys-
tems, can be found in literature in the last decade. Success of piezoelectric
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elements, especially their market representatives in the form of PVDF po-
lymers (polyvinylidene fluoride) and PZT ceramics (lead zirconate titanate)
results from their low price, easy accessibility, high reliability and excellent
dynamic properties. The time required for piezoelectric elements to respond is
negligible relative to vibration periods observed in typical mechanical systems.
Finally, they are controlled by voltage - perhaps the easiest signal to be gene-
rated and transformed by control, electronic systems. Piezoelectric elements
are readily applied to mechanical systems where they introduce artificial, ad-
ditional active damping by measuring mechanical signal, e.g. vibration, and
converting it into an electric one (sensors), then producing a mechanical effect
(actuators) just after receiving the appropriately transformed electric signal
from the control unit in order to counteract the vibration.

One can come across an abundance of works dealing with the problem of
active damping of transverse vibration in one-dimensional continuous systems.
The early works by Bailey and Hubbard (1985), Crawley and de Luis (1987),
Crawley and Anderson (1990) are worth to be mentioned here together with
studies carried out in Poland by Tylikowski (1993), (1997) and Pietrzakowski
(1993), (1997). Researchers are also interested in two-dimensional continua,
e.g. Kim et al. (1993) examined various flat-shaped piezoelectric actuators to
determine the way they interact mechanically with the base structure. Niekerk
et al. (1995) considered the use of PVDF actuators for noise attenuation in cir-
cular plates. Tylikowski (1997) analysed efficiency of piezoelements in rotating
circular plates, where the technical motivation of his work was the attempt
to reduce transverse vibration observed in buzz saws. An interesting approach
to active damping in shells proposed Tzou (1991) by attracting attention to
biomechanical analogies and discussing a concept on piezoelectric neurons and
muscles.

Not only transverse vibration damping in mechanical systems is of interest
of scientists and engineers. An important class of systems represent torsional
systems in which reduction of angular vibration is the goal the researchers aim
at. The ability of piezoelectric elements to measure torsional displacement of
tubes studied Meng-Kao Yeh et al. (1994). A closed-loop control with coupled
piezoelectric sensors and actuators harnessed to active damping of torsional
vibration was discussed by Chia-Chi Sung et al. (1994). As it was analysed by
Tylikowski (1993) in beam-like systems, where the effect of non-perfect attach-
ment of piezoelements to the base structure was examined, also Przybylowicz
(1995) sought for analogous effects in torsional systems.

This time however, the author intends to give up the concept of vibration
damping realised in an active manner, which in fact can be efficient in sys-
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tems with thin-walled and light shafts, in order to concentrate on applying
piezoceramic elements to dynamic eliminators capable of decreasing vibration
amplitude in strongly loaded, heavier systems. The concept here is to use PZTs
in a dynamic eliminator to make it more flexible to varying loading conditions
so that the eliminator effectiveness could be optimised.

Variable frequency of torque exciting the given torsional system makes the
dynamic elimination disadvantageous in certain regions if the stiffness and
damping parameters of it are structurally fixed. By incorporating piezoelec-
tric elements it is possible to adjust some of these parameters to a changing
frequency, obtaining in this way a semi-adaptive eliminator, much more ef-
fective from the point of view of its serviceability. Even the simplest strategy
toward the concept of its adaptivity can bring encouraging results. The con-
cept presented in this paper consists in affecting by PZT elements the damping
coefficient of the torsional dynamic eliminator, making it no longer constant.

2. Model of the system

Consider the discrete-continuous torsional system consisting of three iner-
tia discs Iy, Iy, I3 and shaft connecting the first and second discs. The system
is exposed to mechanical excitation by harmonic torque Mjsinvt applied to
the first disc. The output of the system is reflected by the inertia I3 vibration
of which is to be minimised by dynamic eliminator. Inertia of the eliminator is
expressed by I, (partly by I3). The dynamic eliminator, placed between Iy
and I3, introduces stiffness developing the internal torque M} and damping
producing torque M., see Fig.1.

The eliminator is capable of adjusting its damping properties to varying
excitation frequency according to the previously prepared program. This pro-
gram presents a function of the voltage signal that is applied to piezoelectric
elements inside of the eliminator. When under voltage these elements change
their dimensions what can be the key factor in affecting the damping coef-
ficient. The idea of construction of the eliminator with adaptive damping is
shown in Fig.2.

The figure presents the eliminator designed for operating at the end of a
shaft (end-tip eliminator). It introduces inertia, which can be tuned up by
the additional disc and elasticity in the form of rubber elements (not shown
in the figure). The damping is realised in the way as it is done in a typical
dashpot, i.e. by oil viscosity generating resistive force between two cylinders
in a relative motion. The outer cylinder is posed by the eliminator housing
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with a precisely grinded surface. Inside of it the inner cylinder rotates during
vibration. Its surface is created by set of piezoelectric rings pressed against each
and separated by insulating elements, which additionally reinforce the brittle
PZT elements. It should be remembered that the rings must be very thin,
so that the electrodes could be placed very close, and thus the electric field
possibly high. Radial elongation of the PZT rings is proportional to magnitude
of the electric field. On the other hand, it is clear that the PZTs cannot be too
thin since lead zirconate titanate is a brittle material and has lirnited dielectric
strength. This is why the number of the rings should be big enough to create
a cylinder of considerable length.

The space between the piezoelements and the eliminator housing is filled
with the oil of absolute viscosity p. The oil chamber is closed by the end-face
seal, as shown in Fig.2. The oil gap between the cylinders has the nominal size
of gt,.m, i-e. under no voltage. Application of an electric field in the direc-
tion opposite to natural polarisation of PZT material results in elongation of
the piezoelement. This way the oil gap tightens. The gap can be enlarged by
simple change of the electric field sense, which introduces no other effects or
difficulties. If dimension of the nominal gap is sufficiently small then applica-
tion of electic fields of order of 10® V/m can vary it to an extent substantially
changing the damping constant. To see this in numbers one must concentrate
on constitutive equations of piezoelectric materials.

3. Constitutive equations of piezoelectrics

The first-order approximation of constitutive equations of piezoelectric ma-
terials can be given in a convenient form, as it was done by Nye (1985) or
Damjanovié and Newnham (1992):

E
( )101:1 + dijp By

Eij = Sijk

(3.1)
D; = dijrojr + Egg)Ej

where ¢€;; and D; denote the strain and dielectric displacement and oy,
Ej. are the components of the stress tensor and the electric field vector, re-
spectively. The sgﬁ)l coefficients are the elements of the elasticity tensor for

(

a constant electric field. The coefficients d;;; and ei;) denote the linear
electromechanical coupling and dielectric permittivity for a constant stress,
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respectively. Because of symmetry of the stress and strain tensors the third-
rank tensor d;; is also symmetric in indices j and k. This makes it possible
to derive a simpler, matrix form notation of Eqs (3.1) by incorporating the
following index formula: 4 — ¢ and 23(32) — 4, 13(31) — 5, 12(21) — 6.

x;3 (3)

Fig. 3. Converse longitudinal (transverse) piezoelectric effect

From the constitutive equations (3.1) one can obtain a relationship ena-
bling him to calculate basic parameters like mechanical strains or electric fields
that appear in the longitudinal piezoelectric effect. This effect is presented in
Fig.3. Application of the electric field FEs3 results in elongation of the PZT
element in the direction z,.In fact, piezoelectrics made of lead zirconate tita-
nate have the same electromechanical coupling coefficients in both directions
z) and zj,i.e. di3 = dig = —170-10'2m/V, so the PZT cube shown in Fig.3
swells along both perpendicular axes z; and z9. When shaped as a ring the
element elongates radially of Ar = /Az? + Az under Ej. Let us denote
the PZT ring thickness by hs and its radius by r, see Fig.4. The elongation
will be the following

Ar = er = d|3F3r = dw%’l‘ (3.2)
3

4. Concept of dynamic eliminator with piezoelements

Eq (3.2) results directly from the first one of the constitutive equations
given by (3.1) under no stress. For instance, the ring equipped with electrodes
distant of 0.6 mm and covering the area on the length of 38 mm is capable
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Fig. 4. PZT ring uder transverse electric field
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Fig. 5. Gap in the eliminator versus applied voltage

of changing its radius about +0.02 mm under the voltage £1900V (in such
conditions the thus developed electric field is 25 times below the PZT dielectric
strength threshold)., By assuming the nominal gap to be sized of 0.02 mm (as
in typical journal bearings) we see that it is easy to change essentially this size,
naturally within the range of manufacturing deviations. The main drawback
of such an approach lies just in high requirements imposed on dimensional
accuracy of the cooperating surfaces (very low deviations) what entails greater
costs of after-finishing. But the advantage of precise adaptiveness is the gain.
Variablity of the transverse gap g; in function of voltage is shown in Fig.5. The
straight line presented in Fig.5 is represented by the equation: g; = ¢¢,,,. —U«,
where a =10.4-10"%mm/V and U is the applied voltage (in Volts). At this
moment it is possible to find the damping coefficient of the dynamic eliminator
in function of the applied voltage. From the simplest torsional dashpot model,
shown in Fig.6, we can find the viscous damping constant.

On the assumption of the laminar fuid flow between the cylinders one
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obtains (according e.g. to handbook by Rao, 1990) the following relationship

auD? /81 D
= —+ — 4.1
where
U ~ absolute oil viscosity
97,9¢ — front and transverse gaps, respectively (see Fig.6)
D,l —~ inner cylinder diameter and the length immersed in the oil.
M9
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Fig. 6. Torsional damper model

In the dynamic eliminator shown in Fig.2 the front gap is too big to be
taken into account. As it introduces negligible damping one can simplify Eq
(4.1) to btain finally

muD31 mpD3l

Uy = —"F———
4g: ) 4(Gtnom — aU)

(4.2)

Egs (4.2), which is one of the governing equations of the dynamic eliminator of
torsional vibration closes the analysis of its basic parameters as the relationship
between the damping coefficient and the voltage is explicitly found.

5. Equations of motion of the system

According to Fig.1, together with the internal torques My, M, My,
M, depicted in it, one can derive the equations of motion of the presented
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system and formulate corresponding boundary conditions. These equations
and conditions have the following form

L6(t) = —k[8(t) — (0,1)] — c[f(t) — ©(0,1)]

][(ﬁ(l, t) = M() sin vt - G*Jo(p’(l, t)

where

I; — mass moments of inertia of the discs, 7 =1,2,3

k — stiffness constant of the eliminator {between Iy and I3)
¢ - adaptive damping coefficient, ¢ = ¢(U), see Eqgs (4.2)
Jo ~ cross-section moment of inertia of the shaft

My — amplitude of the excitation torque applied to the

disc I
6(t) — absolute angular displacement of the third disc

absolute angular displacements of the shaft beginning
point (z = 0) and ending point (z =), respectively.

©(0,1),0(l,1)

The torques denoted in Fig.l by My and M, are the internal to-
rques developed in the shaft at its ends, ie. My, = G*Jy¢'(0,t) and
Mg = G*Jo¢'(1,t). Egs (5.1) include also G* constant being the operator
form of the Kirchhoff modulus representing the presence of internal friction in
the shaft material. The Kelvin-Voigt model of the internal friction is assumed

G* = G(1 + ﬁ%) (5.2)

where [ is the retardation time corresponding to this model for the shear

effect.
Eqs (5.1) must be then completed with the equation of motion of the shaft

% 0% . |G*
A 2 == (5.3)

where p is the mass density of the shaft. By predicting a harmonic solution to
Eq (5.3) in the form of ¢(z,t) = e"e'* we obtain the following characteristic
equation

r2a®(14+ifv) + 2 =0 o’ = = (5.4)
which yields the two characteristics roots

14 14
. v R .
e =B @ =evitipy  (54)
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Hence the predicted solution to Eq (5.3) can be written down as

v

o(z,t) = [Cie_l“\/m + CQel“m]eM (5.6)

Assuming that the angular displacement is also a harmonic function, i.e.
6(t) = 6y exp(ivt), then substituting it together with Eq (5.6) into Eqgs (5.1),
we obtain a set of linear simultaneous equations with respect to the complex
unknowns Cj, Cy and 6y. By putting them down in a matrix form we get

a1 a2 a3 bo 0
a1 Gy Q3 Ci =10 (6.7)
0 a3x a3 Co Mo

where

a) = 1/213 + k+ il/C(U)
a2 = a3 = ag) = —k — ivc(U)
as = -Vl +k + ive(U) + iGJog\/l +i0v

asy = 21y + k + ive(U) - iGJy 2 /T + 1By
a

9 . 14 . —i ul.
a3z = (—V I - lGJoE\/l + 1ﬂ1/)e aV/1+i8v

9 . v _ i ll[.
aszy = (—y I + IGJOE\/I + 1By)e aV/1+i8v

6. Results of simulation

Having determined the equations of motion that rule the system dynamics
one can observe its behaviour by tracing it on dynamic amplitude-frequency
characteristics. Since the shaft can perform a steady rotary motion it is more
convenient to examine relative angular displacement measured between the
third disc, which is the output of the system, and the first disc, from which
the harmonic torque disturbance is transmitted through the shaft. Thus, the
ralative displacement Ag = [0y — ¢(0)] is investigated. Obviously, the system
possesses an infinite number of resonances, yet for purely technical reasons,
and because of the presence of the internal friction in the shaft, further reso-
nances can be neglected in the analysis (they disappear for stronger internal
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friction). Admittedly, to explain the problem of semi-adaptive eliminator one
requires to consider the first two resonances. The first one, shown in Fig.7,
occurs at vy} = 143rad/s (it can be shifted by replacing the tuning disk if
needed) and reveals typical features characteristic for simple linear vibrating
systems. Application of higher damping reduces vibration amplitude. This can
be realised by increasing the voltage.
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Fig. 7. Damping of first resonance

The nominal o0il gap already introduces viscous damping (without voltage
signal) which is shown in Fig.7 by the curve denoted by c¢(U = 0). In this
case gt = gt,... = 0.02mm. Application of voltage (Umax =~ 1500 V) definitely
chokes the vibration amplitude by a drastic growth in damping brought about
by a considerable drop in the gap dimension. Yet when kept constant with
growing excitation frequency the voltage fulfills its task only in the direct
neighbourhood of subsequent resonances. For frequencies far from resonant
zones the constant level of damping raises vibration amplitude (which is the
cost of good performance near resonances in purely passive dynamic elimi-
nators). Such an effect is presented in Fig.8 showing the second resonance.
To make the disadvantageous effect more vivid the corresponding logarithmic
characteristics is included as well (Fig.9).

An undamped system (no damping between [, and I3 discs) exhibits
virtually no vibration for the excitation frequency v, (so-called elimination
frequency). Very low vibration amplitude can be gained by switching off the
constant voltage signal, or at best, by changing its sign (Umax = Umin &
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—1500 V). In such a case the system vibrates according to the dashed curves
seen in Fig.8 and Fig.9. The opposite sign of the voltage is to be maintained
until the frequency v, is reached. There intersect all of the curves correspon-
ding to any damping conditions in the system. Then the voltage Upax should
be applied again. Obviously, such a situation repeats itself for the third, fourth
and further resonances. Even the simplest strategy toward adaptiveness of the
dynamic eliminator, i.e. based on applying in turns Upayx and Upi, signals
after subsequent vy (1 = 1,2...) frequencies, can qualitatively enhance the
operation of the dynamic eliminator. Below, given is the table of subsequent
frequencies at which the voltage signal should be switched over.

Table 1. Pole reversal frequency vy [rad/s]

erl ‘ Vs2 ‘ Vs3 | Vs4q [ Vss ‘ Vsé ‘ Vs ‘ Vs8 ‘ Vs9 '

826 | 3156 ‘ 4301 ‘ 8570 ‘ 9136 ‘ 10002 ‘ 16805 ‘ 17760 ‘ 18830 ‘

In Fig.10 the voltage signal versus excitation frequency is presented.

Ug

Umex[—
+ + :‘ + +
0 1 1 1 1 1 1 1 i 1 i 1 1 1 | I | 1 1 1 1 >
5 to 15 J v [KHz]
Unin —

Fig. 10. Voltage as a function of vibration frequency

Function shown in Fig.10 can be realised by embedded in the eliminator
body an electronic unit sensitive to frequency. It is worth to emphasise that vi-
bration frequency can be easily measured by an additional piezelectric element
working as the accelerometer or just by making use of the same PZT rings
assemblied for adapting the oil gap through measuring their torsion according
to the so-called shear piezoelectric effect. It would be then enough to replace
a changeable electronic card with programmed frequencies pertaining to the
given torsional system.
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7. Concluding remarks

In the paper a system undergoing torsional vibration with semi-adaptive
dynamic eliminator is presented. The adaptivity of the dynamic eliminator is
achieved by application of piezoelectric elements which are capable of changing
their overall dimensions when exposed to electric field. When applied to a
specially devised system they can control size of the gap filled with a viscous
medium between moving elements, thus affect the damping properties of such
a system. The well known behaviour of classical dynamic eliminators with
characteristic and disadvantageous growth in vibration amplitude outside of
the resonances can be qualitatively changed by employing the eliminator that
is able to develop two different damping coefficients: ¢min = ¢(Umin) and
Cmax = ¢(Umax ), and adjust them to current frequency of the excitation. Since
the program governing the sequence of switching over the voltage signal is
independent of the system state, therefore the method can only be regarded
as a semi-adaptive approach to dynamic elimination of torsional vibration.

A concept of making the eliminator self-adaptive or, if preferred, semi-
acvtive could be the following. The eliminator measures (PZT or PVDF sen-
sors) current vibration amplitude and starts, by design, changing its damping
coefficient by e.g. slowly increasing voltage. If the vibration amplitude decre-
ases the electronic unit will raise the signal until Upmax is reached, then stops,
and after a while will repeat the procedure again. If the choice of the vol-
tage increment direction was wrong (vibration amplitude grew) the control
unit would immediately change the sign of the voltage and afterwards pro-
ceed as mentioned before. Naturally, such a method does not reflect a fully
active control, which has to react instantly to varying dynamic conditions. The
method requires permanent probing of the vibration amplitude under slight
increments of the voltage signal, yet because of its independent action could
be understood as a semi-active method.
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Zastosowanije elementéw piezoelektrycznych w semi-adaptacyjnym
dynamicznym eliminatorze drgan

Streszczenie

Praca po$wiecona jest problemowi tlumienia drgan w ukladzie torsyjnym, gdzie
zastosowano eliminator drgai z elementami piezoelektrycznymi. Elementy piezoelek-
tryczne zmieniajg swoje wymiary, jezeli poddane zostang dziataniu zewnetrznego pola
elektrycznego. Jezeli elementy takie uksztaltowaé w formie piercieni utozonych jeden
obok drugiego stworza one powloke walcowsa, ktérej promied mozna zmieniaé w za-
leznodci od przylozonego napiecia, zgodnie z tzw. odwrotnym wzdluznym efektem
piezoelektrycznym. Dynamiczny eliminator drgaf posiadajacy taki cylindryczny ele-
ment wykonany z piezoelektryka zamocowany wspdlosiowo z cylindryczng powierzch-
nig obrobiona w obudowie eliminatora w przestrzeni wypelnionej lepkim czynnikiem
moze dopasowywaé swdj wspdlczynnik tlumienia poprzez zmiane wymiardw szcze-
liny olejowej po przylozeniu napiecia. Ta wlasciwosé pozwala dostosowaé tlumienie
eliminatora do 2mieniajacej sie czestosci wymuszenia w badanym ukladzie tak, aby
tlumienie to mialo warto¢ optymalng. W ten sposéb w danym ukladzie zapobiega
sie przed wzrostem amplitudy drgafl poza obszarem rezonansu, charakterystycznym
dla typowych dynamicznych eliminatoréw drga.
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