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In the paper we give an extention of the Vortex Blob Method to cover
axisymmetric flows of viscous liquid. We also present a simple simulation
of a jet flowing into a half-space large tank.

This example shows that the method works and that a more reliable
numerical simulation can be performed.
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1. Introduction

The aim of this paper is to show that the stochastic Vortex Blob Method
(VBM) can be used in simulation of symmetric flows of viscous liquid. We
consider the flow in the half-space large tank what seems to be a very simple
geometric and kinematic problem. The liquid flows into the tank through the
bottom orifice. The initial-boundary problem is solved using the Lagrangian
vortex method. This method seems to be an extention of the well known
2D VBM. When applying and extending this method two steps are required.

First, one has to design an axisymmetric vorticity carrier. Then, it is to
necessary to formulate the appropriate Neumann problem. Both steps are
described in this paper. First, a brief formulation of the VBM is presented.

2. Essence of vortex blob method

The axisymmetric flow of viscous liquid is represented by the following set
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of differential equations
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First of these equations defines the vorticity w, the second one is the vorticity
transport equation and the last one expresses mass conservation. The symbols
V. and V, denote radial and axial components of velocity, respectively.

The vorticity equation (2.1); is written here in the form consistent with
the Planck-Fokker-Kotmogorow (P-F-K) equation (cf Gardiner, 1989) for the
probability density function p(t,z,y|0, zo, ¥o)

op , (ap) , O(bp)

£ —— =DA D= t>0
En 37 + By D const >

This equation represented the probability density formed by a family of sto-
chastic processes. This family, denoted by z(t; zo,yo), y(t; o, ¥o), results from
Ito‘s stochastic differential equations

dz = adt + V2D dW; dy = bdt + V2D dW,

with the initial conditions |y = o, ¥|y = yo.
Probability of the transition (zg,¥9) — (z,y) defines the function
p(t, z,y|0, zo,yo0) given as follows

P(z,y € A) = [ p(t,€,110,50,v0) dédy
A

Comparing the P-F-K and the vorticity equation, we write

dT:(Vr—Z) dt +v2v dW,
T

dz =V, dt + vV2v dW, (2.2)
7‘|0 =T0 Z|0 = 20

In the above dW; denotes the increments of the Wiener processes. The idea
of the VBM is the following: the system of small vorticity carriers, centers at
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(Tk, z) of which move according to equations (2.2), constitute the vorticity
field.
This field is defined as

wlt,r, 2) = / p(t,7, 210, 70, 20)wo (o, 20) drodzg

and solves the system (2.1).
Bach vortex blob is a small object carrying the vorticity contribution

wr = Tex(I7 = 7k, 12 — 2¢])

where x denotes an arbitrary function which vanishes outside a small neigh-
borhood of the point (rg, 2¢). It moves according to the solutions of Egs (2.2).
The total vorticity is expressed as the sum

w = Zwk (2.3)
(k)

The details of this method were presented in our previous papers, e.g. Sty-
czek (1987), Modrzewska and Styczek (1991), Blazewicz and Styczek (1993),
Styczek et al. (1994).

Now, we show the generalisation of this method for an axisymmetric flow.
First, we write the velocity field V as the sum

‘7:17]+‘70+‘7n+‘7,4 (2.4)

where 17] and V, are potential fields, V{) and 17” are induced by the
blobs already present in the flow domain. We consider two classes of blobs.
The first class named ”o0ld” was introduced before and still remains under
consideration. The second one, i.e. "new” blobs are created at every time
step and cancels any violation of the boundary conditions. They appear at
choosen points located close to the boundary of the flow region. Since the
initial locations of these blobs are known, only their vorticity charges should
be found. This and determination of the velocity are essential problems of the
method.

Let us express the tangential and normal velocity components calculated
on the boundary

Vi=Vi+Vi+Vi+VE
VE= VP VRV VD

8 - Mechanika Teoretyczna
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Both the boundary values V¢ and V™ are given and known. They are equal
to zero in the case of rigid, motionless wall. Since 17,4 is a potential field
and vanishes at infinity, there exists a linear (integral) operator L, such that
(Styczek, 1987)

Vi=LV} (2.6)

Substituting Eq (2.6) into Eqs (2.5) one obtains the boundary equation for
Vtand V., both depending on the boundary value of vorticity. This equation
allows one to find the boundary value of vorticity - or its discrete approxima-
tion given by the new class of blobs. We write the boundary equation in the
explicit form

VPV - VE+ LV =V - LV (2.7)

T

The terms V™ and V' are assumed to be equivalent

ob
==V Ady =0

which means that a Neumann problem is to be solved. Eq (2.7) is a singular
mtegral equation. It can be solved in the mean sense.

We integrate Eq (2.7) with respect to the arc-length coordinate over the
interval (s;,S;41).

It can be easily seen that

AT e

Si41 Si41

/LV”ds: / 9 45— 5i's
Os

84 83
Making use of this expression we write

Si41 Si41
/(vf—vof) ds—agf“dsjmfﬂqs():Zrk{ /T(s,k) ds—agi“ds(k)} (2.8)
(k)

En 83

The potential Py is a result of the term Vi, i.e. solution of

0Py "
— = Ady =0

on 0 0
and T'(s,k) denotes the tangential cormponent of velocity induced by a blob
located at the point (rg,2x). Similarly, the potential @(k) denotes the har-
monic function corresponding to the normal component given by the same

blob
oP(k)

on

= N(s, k) AB(k) = 0
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The symbol N(s, k) represents the normal component induced by kth new
blob. Clearly, its charge is unitary, since its charge I} has been incorporated
into the system (2.8).

Note that the system (2.8) is a set of linear algebraic equations for {I%}. It
is required that the number of new blobs and the integration intervals be equal.
It also means that new blobs are located ”over” the corresponding segments
of the integration.

Summing up, two problems have to be solved. The first problem is to
construct an axisymmetric vortex blob. The second one is to formulate a solver
for the Neumann problem. Having solved both, we will be able to find the new
class of blobs at any time displace, then, find a new class of blobs, an so on.

3. Axisymmetric vortex blob

Let w be a given function. Introducing the velocity components as

1
v, =190, v,= 1% 0s,

one obtains the following equation

10/, 09, 0%, o,
T Br( _(97) 922 7% ~w(9) (3.1)

This equation can be solved using the Hankel integral transform Hj, with
k=1

B(z,)sJ1(rs) ds = H, (D)

The transform @ satisfies an ordinary differential equation

95
[e] ~

IS

where @ is the transform of w. The formal solution of Eq (3.2) is

b= [ Gle,0)a(5,0) dc
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The fundamental solution of Eq (3.2) is well known

1| exp[s(z — ()] for (2 =z
G Q) = 2s { exp[—s(z — ()] for (<2
It is convenient to assume that vorticity has the form
(r, 2) = wilr)(2) (3.3)
with
_ ] for R; <7 < Rjyy
w,(r)—{o for T< Ry U Ry, <r
)1 for 2z; <z <z
ZZ(Z)_{O for 2 <21 U zi41 <2

We note that the vorticity w in the form assumed above is conserved along the
trajectory if the liquid is inviscid. This fact is related to the known equation
(cf Batchelor, 1967)

d jw d

E(;) = E(const) =0
The Hankel transform of w;(r) can be calculated in an elementary way. It is

N 1
Wy = ;[Ri2+1=72(Ri+13) - R?JQ(RiS)]

and the integral with respect to z can also be simply evaluated. It involves
expouential and hyperbolic functions (cf Hedar, 1998). The velocity is regular
everywhere and quickly vanishes at infinity. Unfortunately, both formulae for
V; and V, contain single integrals.

Nonetheless, both integrants (involving the Bessel functions J; and .Jp)

vanish relatively fast while r gets large.

4. DPotential boundary problem

It is impossible to find the explicit formulas for potential, unless the shape
of the region is known. We will consider the axisymmetric harmonic problem
for 2 >0

o¢

Ap=0 — f(r) (4.1)

0z z=0



RANDOM VORTEX METHOD APPROACH TO... 869

First, we solve this problem for f(r) =1, <aeand f(r)=0,7 > a.
Expressing solution of the Laplace equation with the use of the transform
Hy(®) we get

o0
1
¢ = —a/ —Jo(rs)J1(as)e™ %% ds (4.2)
S
0
It is also the solution of potential problem corresponding to V, equal to
z=
lor0for 7 < aor r > a,respectively. This means, that &; is given by

Eq (4.2).

Differentiating the above formula, we obtain components of %2 Now, we
are able to solve the problem (4.1).

First, we consider an auxillary problem

. ! for (<r<(+Ar
f(r)_F(T’O_{O for r<{V{+Ar<r

The Hankel transform of F'is
P =~[(¢+ an(s(¢+ An) — C(s)

In this case the transform of an arbitrary function f can be expressed as an
infinite sum

Fls) = =1 3 6ad (Gns) FGrr) — F(Ga)
(n)

or, employing the Stiltjes integral

flo) === [ cntes) arce) «.3)
0

8

The above formulas allow one to find the potential as

oo

B(r,2) = — / Jo(rs) f(s)e=* ds (4.4)

0

where f has been found before. Note, that formulas for f and @ give @
while f(r) was given previously. In this case indeed df = —§({ — a) d¢ and
Eq (4.3) yields &;.
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5. Implementation

As it was mentioned before, the initial-boundary problem is given by the
set of equations (2.1) and the initial-boundary data

! if r<a
2=0 0 if >0
The Neumann problem solver is adapted to such a geometry. The new blobs
are introduced close to the plane z = 0. Each of them overlaps the boundary.
It can be argued that rectangular cross-section of a blob does not form the

best possible shape, but it allows for separation of variables which considerably
simplifies the induction formulas.

—
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Fig. 1. Instantanous flow, Re = 10°
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Fig. 2. Instantanous flow, Re = 104

An ordinary PC Pentium 200 MHz computer was used. One time-step took
approximately 200s when the number of blobs was close to 2 - 104, The
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geometry was constant in time and some elements of the code were executed
only once. The viscosity used in calculations ensures that the Reynolds number
UD/v is in the range 101 +10°.

This value allows one to compare the axial component of velocity with the
empirical one given by formulas from Schlichting (1979). The Fig.3 shows that
the agreement is rather qualitative.

One cannot expect that the calculated field should be very reliable since
the number of computational elements is fairly low.

0.5

® Schlichting results
0.4y ® present results

r-axis

Fig. 3. Axial component of the velocity (mean value) z = 1.5D, Re = 10°

The motion starts instantaneously at ¢ = 0. This impulsive ”switch-on”
causes large and intensive vortex structure advected downstream. Similar phe-
nomenon was observed in the case of plane jet considered before (cf Modrzew-
ska and Styczek, 1991).
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Zastosowanie stochastycznej metody wirowej do symulacji zatopionej
osiowosymetrycznej strugi

Streszczenie

W pracy podano rozszerzenie metody ” Vortex Blob” na ruch osiowosymetryczny
i przedstawiono symulacje strugi plynu lepkiego wplywajacego do pdlograniczonego
obszaru.

Przyklad pokazuje mozliwosci, choé nie jest wyliczony perfekcyjnie.
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