PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic response analysis of light weight pyramidal sandwich plates subjected to water impact

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fluid-solid interaction (FSI) dynamic responses for a Light Weight Pyramidal Sandwich Plate Structure (LWPSPS) under different water-entry velocities (1m/s-6m/s) are investigated numerically and theoretically. The characteristics of impact pressure and structure deformation are obtained by using LS-DYNA code based on the proposed 3D multi-physics (air-water-solid) FEM model. Numerical results show that the average water impact pressure of LWPSPS is much lower than that of the monolithic plate with same mass. Moreover, a phenomenon called “local air cushion” is observed for LWPSPS which does not exist for a monolithic plate. Theoretical hydroelasticity analysis demonstrates that the FSI effect of LWPSPS is weak when the ratio of water impact duration time to wet natural vibration period is greater than 4. In the study, an engineering estimation method to predict the maximum deformation of the LWPSPS is proposed, in which the total deformation is divided into two parts, i.e. local field deformation and global field deformation, and they are both computed using analytical model. Good agreement between the numerical results and ones obtained from the proposed engineering estimation method is achieved. Furthermore, the geometric variation sensitiveness analysis is also conducted.
Rocznik
Tom
Strony
31--43
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
autor
autor
  • School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China, lucascheng62@gmail.com
Bibliografia
  • 1. Faltinsen O.M.: Hydrodynamics of High-Speed Marine Vehicles. Cambridge, UK: Cambridge University Press, 2005.
  • 2. DNV:. Rules for Classification of High Speed, Light Craft and Naval Surface Craft. 2012.
  • 3. Karman V.T.: The impact on sea plane floats during loading. NACA-TN-321, 1929.
  • 4. Wagner H.: Loading of seaplane. NACA-TN-622, 1932.
  • 5. Chuang S.L.: Investigation of impact of rigid and elastic bodies with water. NSRDC-TR-3248, 1970.
  • 6. Stenius I., Rosen A., Battley M., et al.: Hydroelastic Effects in Slamming Loaded Panels. In: 11th. International Conference on Fast Sea Transportation (FAST 2011), Honolulu, Hawaii, USA, 26-29 September 2011. p. 644-652.
  • 7. Faltinsen O.M.: Hydroelastic slamming. Journal of Marine Science and Technology 2000; 5(2):49–65.
  • 8. Berezniski A.: Slamming: the role of hydroelasticity. International Shipbuilding Progress 2001;48(4):333-351.
  • 9. Hirdaris S.E., Temarel P.: Hydroelasticity of ships: Recent advances and future trends. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 2009;223(3):305-330.
  • 10. Stenius I., Rosen A., Kuttenkeuler J.: Hydroelastic interaction in panel-water impacts of high-speed craft. Ocean Engineering 2011;38(2-3):371-381.
  • 11. Metschkow B.: Sandwich panels in shipbuilding. Polish Maritime Research 2006 special issue 1:5-8.
  • 12. Kozak J.: Selected problems on application of steel sandwich panels to marine structures. Polish Maritime Research 2009;16(4):9-15.
  • 13. Qin Z., Batra R.C.: Local slamming impact of sandwich composite hulls. International Journal of Solid and Structures 2009;46(10):2011-2035.
  • 14. Baral N., Cartie D.R., Partridge I.K., et al.: Improved impact performance of marine sandwich panels using through-thickness reinforcement: experimental results. Composite Part B: Engineering 2010;41(2):117-123.
  • 15. Pancirolia R., Abrateb S., Minaka G., et al.: Hydroelasticity in water-entry problems: Comparison between experimental and SPH results. Composite Structures 2012;94(2): 532-539.
  • 16. Vasiliev V.V., Barynin V.A.: Anisogrid composite lattice structures-Development and aerospace applications. Composite Structures 2012;94(3):1117-1127.
  • 17. McShane G.J., Deshpande V.S. and Fleck N.A.: The underwater blast resistance of metallic sandwich beams with prismatic lattice cores. Journal of Applied Mechanics 2007;74(2): 352- 364.
  • 18. Zhu F., Lu G.X., Ruan D., et al.: Plastic Deformation, Failure and Energy Absorption of Sandwich Structures with Metallic Cellular Cores. International Journal of Protective Structures 2010;1(4):507-541.
  • 19. Greenspon J.E.: Sea tests of the U.S.C.G.C. Unimak (Part3). DTMB-TR-978,1956.
  • 20. Olovsson L., Souli M.: LS-DYNA Advanced Course in ALE and Fluid-Structure Coupling. Class Notes, Livermore Software Technology Corporation, Livermore, CA, 2000.
  • 21. Aquelet N., Souli M., Olovsson L.: Euler–Lagrange coupling with damping effects-Application to slamming problems. Computer Methods in Applied Mechanics and Engineering 2006; 195(1-3):110-132.
  • 22. Stenius I., Rosen A., Kuttenkeuler J.: Explicit FE-modeling of fluid-structure interaction in hull-water impacts. International Shipbuilding Progress 2006;53(2):103-121.
  • 23. Jones N.: Structural Impact. Cambridge, UK: Cambridge University Press, 1989.
  • 24. Symonds P.S.: Survey of methods of analysis for plastic deformation of structures under dynamic loading. Brown University, Division of Engineering Report, 1967.
  • 25. Yuzuru F.: On the impulsive of circular plate falling upon water surface. Journal of Zosen Kiokai 1954;94:105-110. (In Japanese)
  • 26. McKirgan J.: Characterization of aluminum 6061-T6 tube for high-rate loading applications. Naval Surface Warfare Center (NSWC) Carderock Division Technical Report, 2004.
  • 27. Jones N.: Slamming damage. Journal of Ship Research 1973;17(2):80-86.
  • 28. Wierzbicki T., Chryssostomidis C., Wiernicki C.: Rupture analysis of ship plating due to hydrodynamic wave impact. Ship Structure Symposium’84, Arlington, VA, 15-16 October 1984. p.237-256.
  • 29. Nagai T.: Elastic response of high tensile steel plates developed by impact on water surface. Bulletin of Society of Japan Naval Architecture and Ocean Engineering 1966; 120:175-184. (In Japanese)
  • 30. Szymanski Y.A.: Ship Structural Mechanics Guide (Volume II). Moscow, RUS: National Technology Press, 1959. (Шиманский Ю А. Корабль структурных руководства механика (том II). Москва, Россия: Национальный технологии Пресс, 1959.). (In Russian)
  • 31. Liu T., Deng Z.C., Lu T.J.: Design optimization of truss-cored sandwich with homogenization. International Journal of Solid and Structures 2006;43(25-26):7891-7918.
  • 32. Wadley H.N.G.: Multifunctional periodic cellular metals. Philosophical Transactions of the Royal Society A 2006;364(1838): 31-68.
  • 33. Edward W.K.: Flexure of structural sandwich construction. Forest Productions Laboratory Report NO.1829, 1951.
  • 34. Bolotin B.B.: Calculation of strength. 1960, 6(6), Mashgiz. (Болотин В В. Расчёт на прочность, вьі(6), Машгиз, 1960). (In Russian)
  • 35. Institute of Mechanics, Chinese Academy of Sciences. Bending, Vibration and Stability of Sandwich Plates and Shells. Beijing, CHN: Science Press, 1977. (In Chinese)
  • 36. Biggs J.B.: Introduction to Structural Dynamics. New York, US: McGraw-Hill, 1964.
  • 37. Stenius I., Rosen A., Kuttenkeuler J.: Explicit FE-modeling of hydroelasticity in panel-water impacts. International Shipbuilding Progress 2007;53(2-3):111-127.
  • 38. ANSYS Inc. ANSYS Theory Manual (Version 5.0). 2002.
  • 39. Timoshenko S., Woinowsky-Krieger S.: Theory of plates and shells. New York, US: McGraw-Hill, 1959.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0010-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.