PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric sonographic imaging - application of synthetic aperture technique to imaging attenuation of ultrasound in tissue structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrasonic imaging is a well-established technique in medicine. However, in most conventional applications of clinical ultrasonic scanners only the peak amplitude echogenicity is used to create the image. Moreover, signal envelope detection destroys potentially useful information about frequency dependence of acoustic properties of tissue comprised in RF backscattered echoes. We have explored the possibility of developing the method of imaging the distribution of the acoustic attenuation in tissue. We expect that the method will help in localization of the pathological states of tissue including tumors and diffuse liver diseases. The spatial resolution and precision of the method are crucial for medical diagnosis, hence the synthetic aperture technique was applied for ultrasonic data collection. The final goal of the presented project is to develop reliable diagnostic tool, which could be implemented in standard USG systems, as the new visualization mode.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
99--110
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
autor
  • Institute of Fundamental Technological Research, Department of Ultrasound Pawińskiego 5b, 02-106 Warsaw, Poland, jlitn@ippt.gov.pl
Bibliografia
  • [1] B. J. Oosterveld, J. M. Thijssen, P. C. Hartman, R. L. Romijn, and G. J. Rosenbusch, Ultrasound attenuation and texture analysis of diffuse liver disease: methods and preliminary results. Phys. Med. Biol., 36(8), 1039-1064, 1991.
  • [2] Y. Saijo and H. Sasaki, High frequency acoustic properties of tumor tissue. In F. Dunn, M. Tanaka, S. Ohtsuki, and Y Saijo., editors, Ultrasonic Tissue Characterization, chapter 12, pages 217–229. Springer-Verlag, Tokyo, 1996.
  • [3] B. L. Mcfarlin, T. A. Bigelow, Y. Laybed, W. D. O’brien, M. L. Oelze, J. S. Abramowicz, Ultrasonic attenuation estimation of the pregnant cervix: a preliminary results, Ultrasound in Obstetrics and Gynecology, 36, 218-225, 2010.
  • [4] Z. F. Lu, J. Zagzebski, and F. T. Lee, Ultrasound backscatter and attenuation in human liver with diffuse disease. Ultrasound Med. Biol., 25(7), 1047-1054, 1999.
  • [5] H. J. Nieminen, S. Saarakkala, M. S. Laasanen, J. Hirvonen, J. S. Jurvelin, and J. Töyräs, Ultrasound attenuation in normal and spontaneously degenerated articular cartilage, Ultrasound Med. Biol., 30(4), 493-500, 2004.
  • [6] V. Zderic, A. Keshavarzi, A. M. Anrew, S. Vaezy, and R. W. Martin, Attenuation of porcine tissues in vivo after high intensity ultrasound treatment, Ultrasound Med. Biol., 30(1), 61-66, 2004.
  • [7] A. E. Worthington and M. D. Sherar, Changes in ultrasound properties of porcine kidney tissue during heating, Ultrasound Med. Biol., 27(5), 673-682, 2001.
  • [8] Y. Labyed, T. A. Bigelow, B. L. McFarlin, Estimate of the Attenuation Coefficient Using a Clinical Array Transducer for the Detection of Cervial Ripening in Human Pregnancy, Ultrasonics, 51, 34-39, 2011.
  • [9] A. Nowicki, Ultrasonic Diagnostics [in Polish], MAKmed, Gdańsk 2000.
  • [10] P. Laugier, G. Berger, M. Fink, , J. Perrin, Specular reflector noise: effect and correction for in vivo attenuation estimation, Ultrasonic Imaging 7, 277-292, 1985.
  • [11] J. Litniewski, Assessment of trabecular bone structure deterioration by ultrasound [in Polish], Prace IPPT, 2006.
  • [12] A. Nowicki, Fundamentals of Doppler Ultrasonography [in Polish], PWN 1995.
  • [13] Z. Klimonda, , A. Nowicki, Imaging of the mean frequency of the ultrasonic echoes, Archives of Acoustics, 32(4) (supplement), 77-80, 2007.
  • [14] J. Ophir, M. A. Ghouse, L. A. Ferrari, Attenuation estimation with the zero crossing technique: phantom studies, Ultrasonic Imaging, 7, 122-132, 1985.
  • [15] F. J. Alonso, J. M. Del Castillo, P. Pintado, Application of singular spectrum analysis to the smoothing of raw kinematic signals, Journal of Biomechanics, 38, 1085-1092, 2005.
  • [16] N. E. Golyandina, K. D. Usevich, I. V. Florinsky, Filtering of Digital Terrain Models by Two-Dimensional Singular Spectrum Analysis, International, Journal of Ecology & Development, 8(f07), 81-94, 2007.
  • [17] H. Hassani, Singular Spectrum Analysis: Methodology and Comparison, Journal of Data Science, 5, 239-257, 2007.
  • [18] J. C. Moore, A. Grinsted, Signular spectrum analysis and envelope detection: methods of enhancing the utility of ground-penetrating radar data, Journal of Glaciology, 52(176) 159-163, 2006.
  • [19] D. H. Schoellhamer, Singular spectrum analysis for time series with missing data, Geophysical Research Letters, 28(16), 3187-3190, 2001.
  • [20] F. Varadi, R. K.Ulrich, L. Bertello, C. J. Henney, Random lag singular cross-spectrum analysis, The Astrophysical Journal, 528(1), L53-L56, 2000.
  • [21] R. Vautard, P. Yiou, M. Ghil, Singular-spectrum analysis: a toolkit for short, noisy chaotic signals, Physica D, 58, 95-126,1992.
  • [22] T. Alexandrov, A Method of Trend Extraction using Singular Spectrum Analysis, REVSTAT Statistical Journal, 7(1), 1-22,2009.
  • [23] N. Golyandina, V. Nekrutkin, A. Ahigljavsky, Analysis of time Series Structure: SSA and related techniques, Chapman & Hall/CRC, 2001.
  • [24] R. Bamler, Principles of Synthetic Aperture radar, Surveys in Geophysics 21, 147-157, 2000.
  • [25] J. A. Jensen, S.I. Nikolov, K.L. Gammelmark, M.H. Pedersen, Synthetic aperture ultrasound imaging, Ultrasonics 44,e5–e15, 2006.
  • [26] C. A. Willey, Synthetic aperture radars – a paradigm for technology evolution. IEEE Trans. Aerospace Elec. Sys., 21, 440-443, 1985.
  • [27] J. C. Curlander, R. N. McDonough, Synthetic aperture radar systems and signal processing. John Wiley&Sons, New York.
  • [28] I. Malecki, Theory of acoustic waves and systems [in Polish], 1964.
  • [29] P. A. Magnin, O. T. von Ramm, F. L. Thurstone, Frequency compounding forspeckle contrast reduction in phased array images, Ultrasonic Imag. 4, 267-281, 1982.
  • [30] M. Sęklewski, P. Karwat, Z. Klimonda, M. Lewandowski, A. Nowicki, Preeliminary results: comparison of different schemes of synthetic aperture technique in ultrasonic imaging, Hydroacoustics, 6, 243-252, 2010.
  • [31] P. Karwat, Z. Klimonda, M. Sęklewski, M. Lewandowski, A. Nowicki, Data Reduction Method for Synthetic Transmit Aperture Algorithm. Archives of Acoustics, 9, 635-642, 2010.
  • [32] A. Nowicki, Z. Klimonda, M. Lewandowski, J. Litniewski, P. A. Lewin, I Trots, Comparison of sound fields generated by different coded excitations--experimental results, Ultrasonics, 44(1), 121-129, 2006.
  • [33] J. Litniewski, A. Nowicki, Z. Klimonda, M. Lewandowski, Sound Fields for Coded Excitations in Water and Tissue: Experimental Approach, Ultrasound in Medicine & Biology, 33(4), 601-607, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0010-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.