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The purpose of the paper was to conduct numerical investigations of the nonlinear wave 

generation in a layer with uniformly distributed mono-size spherical bubbles. The 

mathematical model and examples of results of theoretical studies of this problem are 

presented. The mathematical model of the pressure propagation in the bubbly liquid layer is 

constructed using the linear non-dissipative wave and the Rayleigh-Plesset equations. The 

Commander and Prosperetti model is employed to compute the phase sound speed in the 

bubble layer. The spectra of transmitted and reflected waves are studied and the amplitudes 

of selected frequency harmonics of these waves examined.

INTRODUCTION

  The nonlinear wave generation inside the bubble liquid layers with different physical 

properties is a very important problem. For example, it plays significant role in practice of 

parametric sonars production. The mathematical model of this problem consist of a set of two 

differential equations. The first of them, the linear non-dissipative wave equation, describes 

acoustic pressure changes in the bubble layer [1, 3]. The second of them, the Rayleigh-Plesset 

equation, allows us to predict radius changes of a bubble. It is worth mentioning that a correct 

choice of physical parameters is very important in the process of theoretical analysis. One of 

these parameters is the phase sound speed. In our work we use the model proposed by 

Commander and Prosperetti [2] to compute values of the phase sound speed. 

In this paper we present mathematical model and examples of numerical investigations of 

the nonlinear wave propagation and generation efficiency in a bubble layer. Many different 

environmental and sounding signal parameters have influence on the nonlinear wave 

propagation in the bubble layer. Only a selection of them is examined in this paper. The 

changes of the transmitted and reflected waves are studied. Their magnitude spectra and the 

selected frequency harmonics for different values of the layer thickness, the volume fraction 

and bubble radius are analyzed.
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1. MATHEMATICAL MODEL 

We consider a liquid layer with single size uniformly distributed spherical bubbles 

located between 0x  and Lx . The media outside the layer are considered to be linear 

liquids. At the layer boundary 0x  and on the left of this boundary the acoustic field is the 

sum of the incident ip  and reflected rp  waves correspondingly. On the right of boundary 

Lx  only the transmitted wave tp  propagates. The density and sound speed inside the 

bubble layer are equal L  and Lc  correspondingly. These parameters outside this layer are 

equal 0  and 0c  respectively. Because of small differences between the density of water at 

equilibrium state and in medium with bubbles we can put 0L .

The mathematical model of the acoustic pressure p  propagated inside the layer is built 

on the basis of linear non-dissipative wave equation [1, 3]:
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where  is the local fraction of volume occupied by the gas. Assuming a constant number 

N of air bubbles per unit volume, the volume fraction is given by 

NtxRtx ),(
3

4
),( 3 ,          (2) 

where R  is the instantaneous radius of the bubbles which is modeled by means of the 

Rayleigh - Plesset equation: 
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where vp  is the gas and vapor pressure inside a bubble, statp  is the ambient static pressure, 

vstatg ppRp 02 , 0R  is the equilibrium bubble radius,  is the angular frequency,  is 

the polytropic exponent of gas,  is the coefficient of surface tension, t  is the damping 

coefficient for the bubble. 

To complete the formulation of our problem, the initial and boundary conditions are 

defined. The initial conditions are as follows: 
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Boundary conditions are defined only for the pressure. Taking into account the continuity of 

the pressure and velocity at the layer boundaries 0x  and Lx  we obtain two boundary 

conditions:
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Assuming that two different frequency harmonic waves are propagated, the incident wave at 

0x  is given by :

tPtPtp AAi 21 sinsin),0( .         (6) 

A correct choice of physical parameters is very important in the process of numerical 

examination as they influence the correctness and accuracy of the results. The phase speed of 

acoustic waves Lc  is calculated on the basis of the dispersion relation including the effective 

complex wave number  in the gas-liquid mixture:  
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where 0/ ck  is the acoustic wave number. Considering a bubble population with the same 

equilibrium radius 0R  the square of the complex wave number is given by formula [2]: 
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where 0  is the resonance angular frequency of a bubble. The resonance angular frequency 

0  of a bubble with radius 0R  and the total damping coefficient t  which is the sum of three 

components: the viscous damping constant, the damping constant due to thermal effects and 

the acoustic radiation damping constant can be determined using formulas: 
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where )( 2

0RDz and D  is the gas thermal diffusivity,  is the coefficient of molecular 

viscosity of seawater. The quantity 000 /2 RPp  is the undisturbed pressure in the bubble, 

where 0P  denotes the equilibrium pressure in the liquid. 
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3. RESULTS OF NUMERICAL INVESTIGATIONS 

Numerical calculations were carried out assuming that two harmonic waves with 

frequencies 1f =30 kHz, 2f =33 kHz and the same amplitudes AP =100 kPa propagate in the 

bubble layer. We put the sound speeds 0c  =1450 m/s and density 0 =1000 kg/m
3
.  Figure 1 

presents the magnitude spectrum of the transmitted and reflected waves normalized by 

pressure AP  calculated for volume fraction 6

0 10  and the thickness of the layer L =0.1 m.  

Fig.1. The magnitude spectrum of the transmitted (on the left) and reflected (on the right) waves: 
6

0 10 , m1000R , L =0.1 m. 

The changes of the if  and if2  (i=1, 2) frequency waves were studied in this paper. 

Additionally the difference frequency waves were examined. Numerical calculations were 

carried out for different values of the volume fraction and the bubble layer thickness. The 

amplitude of different frequency harmonics of the transmitted wave normalized by pressure 

AP  as a function of volume fraction obtained for L =0.1 m is shown in Figure 2 (on the left).  

Similar results obtained for the reflected wave are given on the right of this figure. 

Fig.2. The amplitude of different frequency harmonics of the transmitted (on the left) and reflected (on 

the right) wave normalized by pressure PA as a function of volume fraction: m1000R , L =0.1 m. 
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Figure 3 displays the amplitude of different frequency harmonics of transmitted and reflected 

waves normalized by pressure AP  as a function of layer thickness calculated for the volume 

fraction 6

0 10 .

Fig.3. The amplitude of different frequency harmonics of the transmitted (on the left) and reflected (on 

the right) wave normalized by pressure PA as a function of layer thickness: 6
0 10 , m1000R .

The results presented so far were obtained assuming that the bubble radius 

m1000R . Figure 4 demonstrates amplitudes of different frequency harmonics of the 

transmitted and reflected wave normalized by pressure AP  as a function of the bubble layer 

thickness which were achieved for the bubble radius m400R when 6

0 10 .

Fig.4. The amplitude of different frequency harmonics of the transmitted (on the left) and reflected (on 

the right) wave normalized by pressure PA as a function of layer thickness: 6
0 10 , m400R .

Last step of numerical investigations was analysis of wave generation efficiency. The 

amplitude of if2  (i=1, 2) frequency harmonic of the transmitted wave normalized by the 

amplitude of if  frequency harmonic as a function of layer thickness for two different values 
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of the volume fraction are shown in Figure 5. Figure 5a represents results obtained for 

m1000R . Similar results obtained for m400R  are presented in Figure 5b.

a) b)

Fig.5. The amplitude of if2  (i=1, 2) frequency harmonic of the transmitted wave normalized by the 

amplitude of if  frequency harmonic as a function of layer thickness for different values  

of the volume fraction: a) m1000R , b) m400R .

4. CONCLUSIONS 

The problem of nonlinear acoustic waves generation in one-dimensional bubbly liquid 

layer was considered and its mathematical model which is built on the basis of the non-

dissipative wave equation and the Rayleigh-Plesset equation was presented. The finite-

difference method was employed to solve the first of these equations while the second of 

them was solved using the classical forth order Runge-Kutta method. The results of numerical 

investigations were discussed.

The changes of the amplitudes of selected frequency harmonics of transmitted and 

reflected waves were analyzed. Numerical calculations were carried out for different values of 

the physical parameters. First of all the bubble thickness and the volume fraction were 

considered. Moreover calculations were carried out for the resonant bubbles and layers where 

the bubble’s resonance frequency is far from the sounding signals. A detailed analysis shows 

that the volume fraction has significant influence on nonlinear wave propagation and, in 

consequence, the waves generation efficiency. It is worth mentioning that theoretical 

investigations became more difficult when value of this parameter increase. Additionally, the 

theoretical analysis is more complicated for the resonant bubbles then in the case of bubbles 

with different radii.  
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