PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradacja systemów powłoka nanokrystaliczna - stalowe podłoże w warunkach niszczenia kawitacyjnego

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Twórcy
autor
Bibliografia
  • 1. Aifantis, E.C., "Deformation and failure of bulk nanograined and UFG materials" Mater. Sci. Eng. A 503 (2009) 190
  • 2. Allen W.A., Rogers J.W., Penetration of a rod into a semi-infinite target, Journal of the Franklin Institute 272 (1961) 275-284
  • 3. Arndt R.E.A., Keller A.P., Water quality effects on cavitation inception in a trailing vortex, Transaction of the ASME 114 (1992) 430
  • 4. Arndt R.E.A., Paul S., Ellis Ch.R., Application of piezoelectric film in cavitation research, Journal of Hydraulic Engineering June (1997) 539
  • 5. Arora M., Ohl C.-D., Morch K.A., Cavitation inception on microperticles: a self-propelled Particle Accelerator, Physical Review Letters 92 (2004) 174501-1
  • 6. Asaro RJ, Krysl P, Kad B., Deformation mechanism transitions in nanoscale fcc metals. Philos Mag Lett. 83 (2003) 733
  • 7. Avellan F., Farhat M., Shock pressure generated by cavitation vortex collapse, International Symposium on Cavitation Noise and Erosion in Fluid Systems, ASME 88 (1989) 119
  • 8. Barata A., Cunha L., Moura C., Characterisation of chromium nitride films produced by PVD techniques, Thin Solid Films, 398-399 (2001) 501
  • 9. Batista J.C.A., Godoy C., Buono V.T.L., Matthews A., Characterisation of duplex and non-duplex (TiN, Al)N and Cr–N PVD coatings, Mat Sci Eng A 336 (2002) 39
  • 10. Będkowski W., Gasiak G., Lachowicz C., Lichtarowicz A., Lagoda T., Macha E., Relations between cavitation erosion resistance of materials and their fatigue strength under random loading, Wear 230 (1999) 201
  • 11. Benedavid A, Martin P.J., Netterfeld R.P., Kinder T.J., The properties of TiN films deposited by filtered arc evaporation, Surf. Coat. Technol., 70 (1994) 97
  • 12. Benjamin, T.B. and Ellis, A.T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. Roy. Soc., London, Ser. A, 260 (1966) 221
  • 13. Berrios J.A., Teer D.G., Puchi-Cabrera E.S., Fatigue properties of 316L stainless steel coated with different TiNx deposits, Surf. Coat. Technol.148 (2001) 179
  • 14. Berthe L., Fabbro R., Peyre P., Tollier L., Bartnicki E., Shock waves from a water-confined laser-generated plasma, J. Appl. Phys. 82 (1997) 2826
  • 15. Bertrand G., Mahdjoub H., Meunier C., A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings, Surf. Coat. Technol., 126 (2000) 199
  • 16. Bielawski M., Seo D., Residual stress development in UMS TiN coatings, Surf. Coat. Technol. 200 (2005) 1476
  • 17. Billgren P., The use of nitride and carbide coatings on high speed steel tools, Speed steel, Technical Report, SP 22/84, Short Course on Nitride and Carbide Coatings, September 1985, Neuchetel, Switzerland
  • 18. Blake J.R., Tomita Y., Tong R.P., The Art, Craft and Science of Modelling Jet Impact in a Collapsing Cavitation Bubble, Applied Scientific Research 58 (1998) 77
  • 19. Bobylev S.V., Gutkin M. Yu., Ovid’ko I.A., Transformations of grain boundaries in deformed nanocrystalline materials, Acta Mater.52 (2004) 3793
  • 20. Bogachev I.N., Mints R.I., Cavitational erosion and means for its prevention, Israel Program for Scientific Translations, Jerusalem, 1966.
  • 21. Bourne N.K., On the collapse of cavities, Shock wave 11 (2002) 447
  • 22. Bourne N.K., Millett J.C.F., Gray III G.T., On the shock compression of polycrystalline metals, J. Mater. Sci. 44 (2009) 3319
  • 23. Bregliozzi G., Schino A. Di, Ahmed S.I.-U., Kenny J.M., Haefke H., Cavitation wear behaviour of austenitic stainless steels with different grain sizes, Wear 258 (2005) 503
  • 24. Brennen Ch. E., Cavitation and bubble dynamics. Oxford University Press 1995
  • 25. Broszeit E., Friedrich C., Berg G., Deposition, properties and applications of PVD CrxN coatings, Surf. Coat. Technol., 115 (1999) 9
  • 26. Buecken B., Leonhardt G., Wilberg R., Hoeck K., Spies H.J., Direct combination of plasma nitriding and PVD hardcoating by a continuous process, Surf. Coat. Technol., 68/69 (1994) 244
  • 27. Bull S.J., Jones A.M., Multilayer coatings for improved performance, Surf. Coat. Technol. 78 (1998) 173
  • 28. Bull S.J., Rickerby D.S., Robertson T., Hendry A., The abrasive wear resistance of sputter ion plated titanium nitride coatings, Surf. Coat. Technol., 36 (1988) 743
  • 29. Buogo S., Cannelli G.B., Implosion of underwater spark-generated bubble ans acoustic energy evaluation using the Rayleigh model, J. Acoust. Soc. Am. 111 (2002) 2594
  • 30. Burakowski T., Wierzchoń T., Inżynieria powierzchni metali, WNT, Warszawa 1995
  • 31. Burakowski T., Areologia. Powstanie i rozwój, Wydawnictwo Instytutu Technologii Ekspoloatacji PIB, Radom 2007
  • 32. Burnett P.J., Rickerby D.S., The relationship between hardness and scratch adhesion, Thin Solid Films, 154 (1987) 403
  • 33. Cai B., Kong Q.P., Lu L., Lu K., Interface controlled diffusional creep of nanocrystalline pure copper, Scripta Materialia 41 (1999) 755
  • 34. Cairney J.M., Tsukano R., Hoffman M.J., Yang M., Degradation of TiN coating under cyclic loading, Acta Mater.52 (2004) 3229
  • 35. Capolungo L., Cherkaoui M., Qu J., On the elastic–viscoplastic behavior of nanocrystalline materials, Int J Plasticity23 (2007) 561
  • 36. Capolungo L., Jochum C., Cherkaoui M., Qu J., Homogenization method for strength and inelastic behavior of nanocrystalline materials, Int J Plasticity21 (2005) 67
  • 37. Carlton C.E., Ferreira P.J., What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater.55 (2007) 3749
  • 38. Carsley J.E., Ning J., Millian W.W., Hackney S.A., Aifantis E.C., A simple, mixtures-based model for the grain size dependence of strength in nanophase metals, Nanostructured Materials 5 (1995) 441
  • 39. Chang J.T., Yeh C.H., He J.L. Chen K.C., Cavitation erosion and corrosion behavior of Ni–Al intermetallic coatings, Wear 255 (2003) 162
  • 40. Černy R., Kužel R., Valvoda V., Kadlec S., Musil J., Microstructure of titanium nitride thin films controlled by ion bombardment in a magnetron-sputtering device, Surf. Coat. Technol., 64 (1994) 111
  • 41. Chen D., Structural modeling of nanocrystalline materials, Computational Materials Science 3 (1995) 327
  • 42. Chen J.-Y., Yu G.-P., Huang J.-H., Corrosion behaviour and adhesion of ion-plated films on AISI 304 steel, Mat. Chem. Phys. 65 (2000) 310
  • 43. Chen M., Ma E., Hemker K.J., Sheng H., Wang Y., ChengX., Deformation Twinning in Nanocrystalline Aluminum, Science 300, (2003) 1275
  • 44. Chen S., Liu L., Wang T., Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating-substrate combinations, Surf. Coat. Technol.191 (2005) 25
  • 45. Chokshi A.H., An analysis of creep deformation in nanocrystalline materials, Scripta Mater. 34 (1996) 1905
  • 46. Chokshi, AH, Rosen, A., Karch, J. and Gleiter, H., On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials, Scripta Mater. 23 (1989) 1679
  • 47. Chou W.-J., Yu G.,-P. Huang J.-H., Mechanical properties of TiN film coatings on 304 stainless steel, Surf. Coat. Technol. 149 (2002) 7
  • 48. Chow, G.-M.; Gonsalves, K.E., Nanotechnology: Moleculary Designed Materials, ACS, Washington 1996, DC,
  • 49. Chung J., Waas A.M., Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading. Part I: experiments, Int J Impact Eng 27 (2002) 729
  • 50. Coble R.L., A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials, Journal of Applied Physics 34 (1963) 1679
  • 51. Combadiere L., Machet J., Reactive magnetron sputtering deposition of TiN films. I. Influence of the substrate temperature on structure, composition and morphology of the films, Surf. Coat. Technol., 88 (1996), 17
  • 52. Conrad H., Narayan J., On the grain size softening in nanocrystalline materials, Scripta mater. 42 (2000) 1025
  • 53. Curtis, A.; Wilkinson, Ch.; Nanotechniques and approaches in biotechnology, Trends in Biotechnology 3, (2001) 97
  • 54. Czyżniewski A., Powłoki Ti-C:H wytwarzane metodą impulsowego reaktywnego rozpylania magnetronowego, Inżynieria Materiałowa 6 (2000) 258
  • 55. Czyżniewski A., Wytwarzanie i własciwości powłok nanokrystalicznych WC i Nanokompozytowych WC/a-C:H, 13th International Summer School „Modern Plasma Surface Technology”, Koszalin 2002
  • 56. Dalla Torre F., Van Swygenhoven H., Victoria M.. 2002, Nanocrystalline electrodeposited Ni: microstructure and tensile properties, Acta Materialia 50 (2002) 3957
  • 57. Danielewski M., Gil A., Wendler B., Żurek Z., 2003, Powłoki hybrydowe dziś i jutro, Inżynieria Materiałowa 6 (2003) 439
  • 58. Defense Nanotechnology Research and Development program, 2007, http://www.nano.gov/html/res/pdf/DefenseNano2007.pdf
  • 59. Demkowicz M.J., Argon A.S., Farkas D., Frary M., Simulation of plasticity in nanocrystalline silicon, Philosophical magazine 87 (2007) 4253
  • 60. Dobrzański L.A., Współczesne tendencje rozwojowe nauki o materiałach i inżynierii materiałowej, Inżynieria Materiałowa 6 (2003) 271
  • 61. Dobrzański L.A., Kwaśny W., Pakula D., Kriz A., Wpływ warunków nanoszenia na własności powłok Ti+Ti(CxN1-x) uzyskanych w procesie PVD na podłożu ze spiekanej stali szybkotnącej, 13th International Summer School „Modern Plasma Surface Technology”, Koszalin 2002
  • 62. Dobrzański L.A., Polok M., Adamiak M., Structure and properties of wear resistance PVD coatings deposited onto X37CrMoV5-1 type hot work steel, Journal of Materials Processing Technology 164–165 (2005) 843
  • 63. Dobrzański, L.A., Materiały inżynierskie i projektowanie materiałowe, WNT, Warszawa 2006
  • 64. Drexler K.E., Engines of Creation: The Coming Era of Nanotechnology, Anchor Press/Doubleday, New York 1986
  • 65. Dugue C., Fruman D.H., Billard J-Y., Cerrutti P., Dynamic criterion foe cavitation of bubbles, Transactions of the ASME 114 (1992) 250
  • 66. Duncan J.H., Calculations of the collapse of a cavity in the vicinity of a compliant wall, International Symposium on Cavitation Noise and Erosion in Fluid Systems, ASME 88 (1989) 127
  • 67. Edelstein, A.S., Cammarata, R.C., Nanomaterials: Synthesis, Properties and Applications, IOP 1996, Bristol, UK,
  • 68. Eisenberg Ph., Preiser H.S., Thiruvengadam A., On the mechanisms of cavitation damage and methods of protection, Trans SNAME 73 (1965)
  • 69. Elstner F., Erlich A., Giegengack H., Kupfer H., Richter F., 1994, Structure and properties of titanium nitride thin films deposited at low temperatures using direct current magnetron sputtering. J. Vac. Sci. Technol. A, 12(1994) 476
  • 70. Endo K., Okada T., Baba Y.: Fundamental Studies on Cavitation Erosion. Bulletin of the JSME 12 (1969) 729
  • 71. Fan G.J., Chooa H., Liawa P.K., Lavernia E.J., A model for the inverse Hall–Petch relation of nanocrystalline materials, Mat Sci Eng A 409 (2005) 243
  • 72. Farkas D., Fracture Resistance of Nanocrystalline Ni, Metallurgical and Materials Transactions A 38 (2007) 2168
  • 73. Fedorov A.A., Gutkin M.Yu., Ovid’ko I.A., Transformations of grain boundary dislocation pile-ups innano- and polycrystalline materials, Acta Materialia 51 (2003) 887
  • 74. Fedotkin I., Yachno O., Some problems of development of cavitation technologies for industry applications, CAV2001, session A4.004
  • 75. Feller H.G., Kharrazi Y., Cavitation erosion of metals and alloys, Wear 93 (1994) 249
  • 76. Feynman, R.P., There’s Plenty of Room at the Bottom, Engineering and Science (California Institute of Technology, 1960), www.zyvex.com/nanotech/feynman.html
  • 77. Final Report, 2004, “Nanoscience and nanotechnologies: opportunities and uncertainties” –The Royal Society & The Royal Academy of Engineering, http://www.nanotec.org.uk/finalReport.htm
  • 78. Forrest P.G., Fatigue of metals, Pergamon Press 1962
  • 79. Fortes Patella R., Reboud J-L., A new approach to evaluate the cavitation erosion power, J.Fluids Eng., Trans. ASME 120 (1998) 335
  • 80. Friedrich C., Berg G., Broszeit E., Rick F., Holland J., PVD CrxN coatings for tribological application on piston rings, Surf. Coat. Technol. 97 (1997) 661
  • 81. Fu W., Zheng Y., He X., Resistance of a high nitrogen austenitic steel to cavitation erosion, Wear 249 (2001) 788
  • 82. Fujikawa S., Akamatsu T., Effects of non-equilibrium consendation of vapour on the pressure wave produced by collapse of a bubble in liquid, J Fluid Mech97-3 (1980) 481
  • 83. Garcia R., Hammitt F.G., Cavitation damage and correlations with material and fluid properties, J Basic Eng. 89 (1967) 753
  • 84. Gautier C. Moussaoui H. Elstner F., Machet J., Comparative study of mechanical and structure properties of CrN by d.c. magnetron sputtering and vacuum arc evaporation, Surf. Coat. Technol., 86-87 (1996) 254
  • 85. Geng J., Schuler A., Oelhafen P., Gantenbein P., Changing TiN film morphology by „plasma biasing”, J. Appl. Phys. 86 (6) (1999) 3460
  • 86. Gleiter H., Nanostructured materials: basic concepts and microstructure, Acta Mater. 48 (2000) 1
  • 87. Gomółka E. Szajnok A., Chemia wody. Arkady, Warszawa 1987
  • 88. Grabski M.W., Struktura granic ziarn w metalach, Katowice, Wyd. Śląsk 1969
  • 89. Grant W.K., Loomis C., Moore J.J., Olson D.L., Mishra B., Perry A.J., Charakteryzation of hard chromium nitride coatings deposited by cathodic arc vapor deposition, Surf. Coat. Technol. 86-87 (1996) 788
  • 90. Gryaznov V.G., Polonsky I.A., Romanov A.E., Trusov L.I., Size effects of dislocation stability in nanocrystals, Phys.Rev. B 44 (1991) 42
  • 91. Gu P., Kad B.K., Dao M., A modified model for deformation via partial dislocations and stacking faults at the nanoscale, Scripta Materialia 62 (2010) 361
  • 92. Guruvenkt S., Mohan Rao G., Effect of ion bombardment and substrate orientation on structure and properties of titanium nitride films deposited by unbalanced magnetron sputtering, J. Vac. Technol. A 20(3) (2002) 678
  • 93. Gutkin M.Yu., Ovid’ko I.A., Plastic Deformation in Nanocrystalline Materials, edi. R.Hull, Springer-Verlag Berlin 2004
  • 94. Gutkin M.Yu., Ovid’ko I.A., Pande C.S., Theoretical models of plastic deformation processes in nanocrystalline materials, Rev. Adv. Mater. Sci. 2 (2001) 80
  • 95. Hahn H., Mondal P., Padmanabhan K.A., Plastic deformation of nanocrystalline materials, NanoStructured Mataials, 9 (1997) 603
  • 96. Hahn H., Padmanabhan K.A., Mechanical response of nanostructured materials, NanoStructured Materials 6 (1995) 191
  • 97. Haibach E., The allowable stresses under variable amplitude loading of welded joints, Proc. Fatigue of Welded Structures 6 (1970) 328
  • 98. Hall E.O., The deformation and ageing of mild steel: III Discussion of results, Proceedings of the Physical Society. Section B 64 (1951) 747
  • 99. Hallander J.F.E., Bark G., Influence of time displacement and other parameters on the interaction between neighbouring cavities in the generation of propeller cavitation noise, ASME Fluids Engineering Division Summer Meeting, June 22-26, Vancouver, BC, Canada. ASME, New York, NY, USA. (1997) Paper no. FEDSM97-3238, 1997
  • 100. Hammitt F.G., Cavitation and multiphase flow phenomena, McGraw-Hill Inc., 1980
  • 101. Han S., Lin J.H., Kuo J.J., He J.L., Shih H.C., The cavitation-erosion phenomenon of chromium nitride coatings deposited using cathodic arc plasma deposition on steel, Surf. Coat. Technol. 161 (2002) 20
  • 102. Hattori S., Hirose T., Sugiyama K., Prediction method for cavitation erosion based on measurement of bubblecollapse impact loads, Wear 269 (2010) 507
  • 103. Hattori S., Ishikura R., Revision of cavitation erosion database and analysis of stainless steel data, Wear 268 (2010) 109
  • 104. Hattori S., Mori H., Okada T., Quantitative evolution of cavitation erosion, Journal of Fluids Engineering 120 (1998) 179
  • 105. Hattori S., Nakao E., Cavitation erosion mechanisms and quantitative evaluation based on erosion particles, Wear 249 (2002) 839
  • 106. He X-m., Baker N., Kehler B.A., Walter K.C., Nastasi M., Nakamura Y., Structure, hardness, and tribological properties of reactive magnetron sputtered chromium nitride films, J. Vac. Sci. Technol., A 18(1) (2000) 30
  • 107. Heathcock C.J., Protheroe B.E., Ball A., Cavitation erosion of stainless steels, Wear 81 (1982) 311
  • 108. Helmersson U. Johanson B.-O., Sundgren J.-E., Hentzell H.T.G., Billgren P., Adhesion of titanium nitride coatings on high-speed steels J. Vac. Sci. Technol. A, 3(2) (1985) 308
  • 109. Herr W., Matthes B., Broszeit E., Kloos K. H., Fatigue performance and tribological properties of r.f. sputtered TiN coatings, Surf. Coat. Technol.57 (1993) 43
  • 110. Hillert H., On the theory of normal and abnormal grain growth, Acta Metallica 13 (1965) 227
  • 111. Hobbs J.M., Experirnce with a 20-kc cavitation erosion test, ASTM 408 (1967) 159
  • 112. Hogmark S., Hedenqvist P., Jacobsen S., Tribological properties of thin hard coatings: demands and evaluation, Surf. Coat. Technol. 90 (1997) 247
  • 113. Hotta S., Itou Y., Saruki K., Arai T., Fatigue strength AT a number of cycles of thin hard coated steel with quench-hardened substrates, Surf. Coat. Technol., 73 (1995) 5
  • 114. Huang H.L., A study of dislocation evolution in polycrystalline copper during low cycle fatigue at low strain amplitudes, Mat Sci Eng A 342 (2003) 38
  • 115. Huang J., Zhang H., Level set method for numerical simulation of a cavitation bubble, its growth, collapse and rebound near a rigid wall, Acta Mech Sin 23 (2007) 645
  • 116. Huang S., Mahamad A.A., Modeling of cavitation bubble dynamics in multicomponent mixtures, Journal of Fluids Engineering 131 (2009) 031301-1
  • 117. Hugo R.C., Kung H., Weertman J.R., Mitra R., Knapp J.A., Follstaedt D.M., In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films, Acta Mater. 51 (2003) 1937
  • 118. Hurkmans T. Lewis D.B., Brooks J.S., Münz W.-D., Chromium nitride coatings grown by unbalanced magnetron (UBM) and combined arc/unbalanced magnetron (ABSTM) deposition techniques, Surf. Coat. Technol., 86-87 (1996) 192
  • 119. Hurkmans T. Lewis D.B., Paritong H., Brooks J.S., Münz W.-D., Influence of ion bombardment on structure and properties of unbalanced magnetron grown CrN coatings, Surf. Coat. Technol., 114 (1999) 52
  • 120. Ichikawa S., Miyazawa K., Ichinose H., Ito K., The microstructure of deformed nanocrystalline Ag and Ag/Fe alloy, Nanostructured Materials, 11 (1999) 1301
  • 121. Iwai Y., Honda T., Yamaa H., Matsumura T., Larsson M., Hogmark S.: Evaluation of wear resistance of thin hard coatings by a new solid particle impact test, Wear 251 (2001) 861
  • 122. Jakubowicz A., Orłoś Z., Wytrzymałość materiałów, WNT 1984
  • 123. Jayaram V., Bhowmick S., Xie Z.-H., Math S., Hoffman M., Biswas S.K., Contact deformation of TiN coatings on metallic substrates, Mat Sci Eng A 423 (2006) 8
  • 124. Jeong D.H., Erb U., Aust K.T., Palumbo G., The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni–P coatings, Scripta Materialia 48 (2003) 1067
  • 125. Jia D., Ramesh K.T., Ma E., Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron, Acta Materialia 51 (2003) 3495
  • 126. Jiang, B., Weng, G.J., A theory of compressive yield strength of nano-grained ceramics. Int. J. Plast. 20 (2004) 2007
  • 127. Jones I.R., Edwards D.H., 1960, An experimental study of the forces generated by thecollapse of transient cavities in water, Journal of Fluid Mechanics 7 (1960) 596
  • 128. Jurczyk M., Jankowska E., Nowak M., Jakubowicz J., 2002, Nanocrystalline titanium-type metal hydride electrodes prepared by mechanical alloying, Journal of Alloys and Compounds 336 (2002) 265
  • 129. Kanthale P.M., Gogate P.R., Pandit A.B., Wilhelm A.M. Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: cluster approach, Ultrasonics Sonochemistry 12 (2005) 441
  • 130. Karimi A., Avellan F., Comparison of erosion mechanisms in different types of cavitation, Wear 113 (1986) 305
  • 131. Karimi A., Leo W.R., Phenomenological model for cavitation erosion rate computation, Mat Sci Eng A 95 (1987) 1
  • 132. Kato H., Recent Advances and Future Proposal on Cavitation Erosion Research, International STG/HSVA Symposium on Propulsors and Cavitation, Hamburg, June 1992
  • 133. Ke M., Hackney S.A., Milligan W.W., Aifantis E.C., Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films, Nanostructured Materials 5 (1995) 689
  • 134. Kim H.S., A composite model for mechanical properties of nanocrystalline materials, Scripta Materialia, 39 (1998) 1057
  • 135. Kim H.S., Bush M.B., The effects of grain size and porosity on the elastic modulus of nanocrystalline materials, NanoStructured Materials 11 (1999) 361
  • 136. Kim H.S., Estrin Y., Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials. Acta Mater. 53 (2005) 765
  • 137. Kim H.S., Estrin Y., Bush M.B., Plastic deformation behaviour of fine-grained materials, Acta Mater. 48 (2000) 493
  • 138. Kim S.S., Han J.G., Lee S.Y., Deposition behaviours of CrN films on the edge area by cathodic arc plasma deposition process, Thin Solid Films 334 (1998) 133
  • 139. Knapp R. T., Daily J. W., Hammit F.G., Cavitation, McGraw-Hill, New York 1970
  • 140. Kobayashi Sh., Tsurekawa S., Watanabe T., Roles of structure-dependent hardening at grain boundaries and triple junctions in deformation and fracture of molybdenum polycrystals, Mat Sci Eng A 483-484 (2008) 712
  • 141. Kocańda S., Zmęczeniowe pękanie metali, WNT, Warszawa 1985
  • 142. Kocańda S., Szala J., Podstawy obliczeń zmęczeniowych, PWN, Warszawa 1997
  • 143. Koch C. C. Structural nanocrystalline materials: an overview, J Mater Sci 42 (2007) 1403
  • 144. Koch C.C., Scattergood R.O., Murty K.L., The Mechanical Behavior of Multiphase Nanocrystalline materials – overview, JOM 59 (2007) 66
  • 145. Kong X.; Qiao L.; Liu Y. Wear behavior of nanocrystalline Cu-Zn alloy, Journal of Materials Engineering and Performance 12 (2003) 312
  • 146. Kozirew S.P., On cumulative collapse of cavitation cavities, Transaction of the ASME 90 (1968) 116
  • 147. Krause H., Mathias M., Investigation of cavitation erosion using x-ray residual stress analysis, Wear 119 (1987) 343
  • 148. Kula P., Inżynieria warstwy wierzchniej, Wydawnictwo Politechniki Łódzkiej, Łódź 2000
  • 149. Kumar K.S., Suresh S., Chisholm M.F., Horton J.A., Wang P., Deformation of electrodeposited nanocrystalline nickel, Acta Mater.51 (2003) 387
  • 150. Kyzioł L., Świątek K., Modelowanie i weryfikacja doświadczalna przebijalności tarczy pociskami, Zeszyty Naukowe Akademii Marynarki Wojennej Rok XLX Nr 2 (177) 2009
  • 151. Lauterborn W., Bolle H., Experimental investigation of cavitation-bubble collapse in the neighbourhood of a solid boundary, J Fluid Mech. 72 (1975) 391
  • 152. Lebedev A.A., Kosarchuk V.V., Influence of phase transformations on the mechanical properties of austenitic stainless steels, Int. J. Plast. 16 (2000) 749
  • 153. Li, J.,Weng, G.J., A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials. Int. J. Plast. 23 (2007) 2115
  • 154. Liao X. Z., Zhou F., Lavernia E. J., Srinivasan S. G., Baskes M. I., He D. W., Zhu Y. T., Deformation mechanism in nanocrystalline Al: Partial dislocation slip, Applied Physics Letters 83 (2003) 632
  • 155. Lima M.M., Godoy C., Modenesi P.J., Avelar-Batista J.C., Davoson A., Matthews A., Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC–Co thermally sprayed coatings, Surf. Coat. Technol. 177–178 (2004) 489
  • 156. Liu C., Bi Q., Ziegele H., Leyland A., Mattews A., Structure and corrosion properties of PVD Cr-N coatings, J. Vac. Sci. Technol. A 20(3) (2002) 772
  • 157. Lousa A., Romero J., Martinez E., Esteve J., Montala F., Carreras L., Multilayered chromium/ chromium nitride coatings for use in pressure die-casting, Surf. Coat. Technol., 146-147 (2001) 268
  • 158. Ma L.W., Cairney J.M., Hoffman M., Munroe P.R., Deformation mechanisms operating during nanoindentation of TiN coatings on steel substrates, Surf. Coat. Technol. 192 (2005) 11
  • 159. Maheo D., Poitevin J.-M., Microstructure and electrical resistivity of TiN films deposited on heated and negatively biased silicon substrates, Thin Solid Films, 237 (1994) 78
  • 160. Mann B.S., Arya V., An experimental study to correlate water jet impingement erosion resistance and properties of metallic materials and coatings, Wear 253 (2002) 650-661
  • 161. Mann B.S., Boronizing of cast martensitic chromium nickel stainless steel and its abrasion and cavitation-erosion behaviour, Wear 208 (1997) 125
  • 162. Markmann J., Bunzel P., Rosner H., Liu K.W., Padmanabhan K.A., Birringer R., Gleiter H., Weissmuller J., Microstructure evolution during rolling of inert-gas condensed palladium, Scripta Materialia 49 (2003) 637
  • 163. Marschall H.B., Morch K.A., Keller A.P., Kjeldsen M., Cavitation inception by almost spherical solid particles in water, Physics of fluids, 15 (2003) 545
  • 164. Martineau R.L., Prime M.B., Duffey T., Penetration of HSLA-100 steel with tungsten carbide spheres at striking velocities between 0.8 and 2.5 km/s, International Journal of Impact Engineering 30 (2004) 505
  • 165. Martinez E., Romero J., Lousa A., Esteve J., Wear behaviour of nanometric CrN/Cr multilayers, Surf. Cost Technol., 163-164 (2003) 571
  • 166. Marynin V. H., Erosion of vacuum-ARC Ti–N coatings, Materials Science 39 (2003) 447
  • 167. Masumura R. A., Hazzledine P. M., Pande C. S., Yield stress of fine grained materials, Acta Mater. 46 (1998) 4527
  • 168. Mathias M., Gocke A., Pohl M., The residual stress, texture and surface changes in steel induced by cavitation, Wear 150 (1991) 11
  • 169. Matthews A., Leyland A., Holmberg K., Ronkainen H., Design aspects for tribological surface coatings, Surf. Coat. Technol. 100-101 (1998) 1
  • 170. Matula T.J., Single-bubble sonoluminescence in microgravity, Ultrasonics 38 (2000) 559
  • 171. Matula T.J., Roy R.A., Mourad P.D., Comparison of multibubble and single-bubble sonoluminescence spectra, Physical revive Letters 75 (1995) 2602
  • 172. Mayerhofer P.H., Kunc F., Musil J., Mittterer C., A comparative study on reactive and non-reactive unbalanced magnetronsputter deposition of TiN coatings, Thin Solid Films 415 (2002) 151
  • 173. Mayrhofer P.H., Tichler G., Mitterer C., Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering, Surf. Coat. Technol., 142-144 (2001) 78
  • 174. Mendala B., Swadźba L., Hetmańczyk M., Otrzymywanie i własności powłok z azotku chromu na stalach martenzytycznych, Inżynieria Materiałowa 5 (1999) 314
  • 175. Meng L-J., dos Santos M.P., Characterisation of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures, Surf. Coat. Technol., 90 (1997) 64
  • 176. Mercier S., Molinari A., Y. Estrin, Grain size dependence of strength of nanocrystalline materials as exemplified by copper: an elastic-viscoplastic modelling approach, J Mater Sci 42 (2007) 1455
  • 177. Meyers M.A., Mishra A., Benson D.J., Mechanical properties of nanocrystalline materials, Progress in Materials Science 51 (2006) 427
  • 178. Michalczewski R., Piekoszewski W., Szczerek M., Tuszyński W., Badanie zdolności do przenoszenia obciążeń testowej przekładni zębatej z kołami pokrytymi powłoką TiN, Problemy Eksploatacji 1 (2003) 247
  • 179. Michalski A., Binh H.T., Nanokrystaliczne warstwy żelaza otrzymywane metodą impulsowo plazmową, Inżynieria Materiałowa 5 (1999) 288
  • 180. Mishra R. S., McFadden S. X., Valiev R. Z., Mukherjee A. K., Deformation mechanisms and tensile superplasticity in nanocrystalline materials, JOM 51 (1999) 37
  • 181. MNiSW - Raport, Nanonauka i nanotechnologia – Narodowa Strategia dla Polski – Raport, Warszawa 2006
  • 182. Mori T., Fukuda S., Takemura Y., Improvment of mechanical properties of Ti/TiN multilayer film deposited by sputtering, Surf. Coat. Technol. 140 (2001) 122
  • 183. Münsterer S., Kohlhof K.: Cavitation protection by low temperature TiCN coatings, Surf. Coat. Technol. 74-75 (1995) 642
  • 184. Nalwa, H.S., Handbook of Nanostructured Materials and Nanotechnology, Academic Press 2000
  • 185. Navinšek B. Panjan P., Milošev I., Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures, Surf. Coat. Technol., 97 (1997) 182
  • 186. Nieh T.G., Wadsworth J., Hall–Petch relation in nanocrystalline Solids. Scr Metall Mater 25 (1991) 955
  • 187. Nieh T.G., Wang J.G., Hall–Petch relationship in nanocrystalline Ni and Be–B alloys, Intermetallics 13 (2005) 377
  • 188. NNI- Nanotech Facts, http://www.nano.gov
  • 189. Nobre J.P., Dias A.M., Gras R., Resistance of a ductile steel surface to spherical normal impact indentation; use of pendulum machine, Wear 211 (1997) 226
  • 190. Nogués, J.; Rao, K.V.; Inoue, A.; Suzuki, K., A STM study of the microstructure of amorphous and nanocrystalline Fe-Zr-B-Cu ribbons, NanoStruct Mater 5 (1995) 281
  • 191. Noskova N.I., Deformation of nanocrystalline pure metals and alloys based on Fe and Al, Journal of Alloys and Compounds 434–435 (2007) 307
  • 192. Numachi F. An experimental study of accelerated cavitation induced by ultrasonics, Journal of Basic Engineering 87 (1965) 967
  • 193. Odén M., Almer J., Håkansson G., The effect of bias voltage and annealing on the microstructure and residual stress of arc-evaporated Cr-N coatings, Surf. Coat. Technol. 120-121 (1999) 272
  • 194. Odén M., Ericsson C., Håkansson G., Ljungcrantz H., Microstructure and mechanical behaviour of arc-evaporated Cr-N coatings, Surf. Coat. Technol. 114 (1999) 39
  • 195.Oettel H. Wiedemann R., Residual stress in PVD hard coatings. Sufr. Coat. Technol., 76-77 (1995) 265
  • 196. Okada T. , Hattori S., Shimizu M., A fundamental study of cavitation erosion using a magnesium oxide single crystal (intensity and distribution of bubble collapse impact loads) Wear 186-187 (1995) 437
  • 197. Okada, T., Iwai, Y., Hattori, S., Tanimura, N., Relation between impact load and the damage produced by cavitation bubble collapse, Wear 184 (1995) 231
  • 198. Ovid’ko I. A., Deformation of nanostructures, Science 295 (2002) 2386
  • 199. Ovid’ko I. A., Review on the fracture processes in nanocrystalline materials, J Mater Sci 42 (2007)1694
  • 200. Ovid’ko I.A., Sheinerman A.G., Triple junction nanocracks in deformed nanocrystalline materials, Acta Materialia 52 (2004) 1201
  • 201. Padilla H. A.; Boyce B. L., A Review of Fatigue Behavior in Nanocrystalline Metals Experimental Mechanics 50 (2010) 5
  • 202. Padmanabhan K.A., Gleiter H., Optimal structural superplasticity in metals and ceramics of microcrystalline- and nanocrystalline-grain sizes, Mat Sci Eng A 381 (2004) 28
  • 203. Pakieła Z., Mikrostrukturalne uwarunkowania właściwości mechanicznych nanokrystalicznych metali, Inżynieria Materiałowa 4 (2005) 175
  • 204. Palumbo G., Thorpe S.J., Aust K.T., On the contribution of triple junctions to the structure and properties of nanocrystalline materials, Scripta Metallurgica et Materialia 24 (1990) 1347
  • 205. Paris PC, Gomez RE, Anderson WE., A rational analytic theory of fatigue. Trend Eng 13 (1961) 9
  • 206. Patsalas P., Charitidis C., Logothetidis S., The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surf. Coat. Technol. 125 (2000) 335
  • 207. Perry A.J., Valli J., Steinmann P.A., Adhesion scratch testing: a round-robined experiment. Surf. Coat. Technol., 36 (1988) 559
  • 208. Petch N.J., 1953, The cleavage strength of polycrystals, Journal of the Iron Steel Institute 174 (1953) 25
  • 209. Philipp A., Lauterborn W., Cavitation erosion by single laser-produced bubbles, J. Fluid Mech. 361 (1998) 75
  • 210. Piekoszewski W., Wpływ powłok na zmęczenie powierzchniowe smarowanych stalowych węzłów tarcia, Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – PIB, Radom 2011
  • 211. Plesset M.S., The pulsation method for generating cavitation damage, Trans. ASME Journal of Basic Engineering 85 (1963) 360
  • 212. Plesset M.S., Devine R.E., Effect of exposure time on cavitation damage, Trans. ASME Journal of Basic Engineering 88 (1966) 691
  • 213. Pradhan, S.K.; Chakraborty, T.; Gupta, S.P. Sen; Suryanarayana, C.; Frefer, A.; Froes, F.H. X-ray powder profile analyses on nanostructured niobium metal powders Nanostructured Materials 5 (1995) 53
  • 214. Precht W, Łunarska E, Czyżniewski A, Pancielejko M, Walkowiak W, Corrosion resistance, structure and mechanical properties of PVD TiCxN1-x coatings, Vacuum 47 (6-8) (1996) 867
  • 215. Precht W., Czyżniewski A., Wytwarzanie i niektóre własciwości warstw nano-krystalicznych i nanokompozytowych typu XC/a-C:H dla zastosowań tribologicznych, 13th International Summer School Mielno’2002, Modern Plasma Surface technology, Koszalin 2002
  • 216. Precht W., Czyżniewski A., Rylski A, Pancielejko A., Walkowiak W, Właściwości warstw TiCxN1-x nanoszonych na podłoża stalowe trzema metodami PVD, Materiały I Ogólnopolskiej Konferencji Naukowej Łódź `94 nt. Nowoczesne Technologie w Inżynierii Powierzchni, Łódź, wrzesień 1994, 191
  • 217. Puchi-Cabrera E.S., Matinez F., Herrera I., Berrios J.A., Dixit S., Bhat D, On the fatigue behavior of an AISI 316 L stainless steel coated with a PVD TiN deposit. Surf. Coat. Technol. 182 (2004) 276
  • 218. Qing X., Xingming G., The scale effect on the yield strength of nanocrystalline materials, International Journal of Solids and Structures 43 (2006) 7793
  • 219. Qu R., Patankar R., Rao M.D., Stochastic modeling of fatigue crack propagation by collective motion of dislocations, International Journal of Fatigue 29 (2007) 181
  • 220. Rebholz C., Ziegele H., Leyland A., Matthews A., Structure, mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering, Surf. Coat. Technol., 115 (1999) 222
  • 221. Remington B. A., Bazan G., Belak J., Bringa E., Colvin J. D., Edwards M. J., Glendinning S. G., et. al., Materials science under extreme conditions of pressure and strain rate, Metallurgical and Materials Transactions A 35 (2004) 2587
  • 222. Richman R.H., McNaughton W.P., 1990, Correlation of cavitation erosion behaviour with mechanical properties of metals, Wear 140 (1990) 63
  • 223. Richtert M, Richtert J, Zastosowanie metody cyklicznego wyciskania ściskającego (CWS) do wytwarzania materiałów o niekonwencjonalnych własnościach – część II, Inżynieria Materiałowa 2 (2001) 73
  • 224. Richtert M, Richtert J, Zasadziński J., Hawryłkiewicz S., Nanomateriały metaliczne kształtowane duzymi odkształceniami plastycznymi, Inżynieria Materiałowa 2 (2003) 59
  • 225. Rickerby D.S., Burrnet P.J., The wear and erosion resistance of hard PVD coatings, Surf. Coat. Technol., 33, (1987) 191
  • 226. Roco M.C., Bainbridge W.S., 2001, Societal Implications of Nanoscience and Nanotechnology, NSET Workshop report, http://www.wtec.org/nanoreports/nanosi.pdf
  • 227. Rodak K., Wrożyna A., Wpływ intensywnego odkształcania plastycznego na kształtowanie struktury i właściwości stali austenitycznej, Inżynieria Materiałowa 6 (2009) 525
  • 228. Rosner H., Markmann J., Weissmuller J., Deformation twinning in nanocrystalline Pd, Philosophical Magazine Letters 84 (2004) 321
  • 229. Schijve J., Fatigue of structures and materials in the 20th century and the state of the art, International Journal of Fatigue 25 (2003) 679
  • 230. Schiller S., Beister G., Reschke J., Hoetzsch G., TiN hard coatings deposited on high-speed steel substrate by reactive direct current magnetron sputtering, J. Vac. Sci. Technol. A, 5(4) (1987) 2180
  • 231. Sencer B.H., Maloy S.A., Gray III G.T., The influence of shock pulse shape on the structure/property behaviour of copper and 316L austenitic stainless steel, Acta Materialia 53 (2005) 3293
  • 232. Shiao M.-H., Kao S.-A., Shieu F.-S., Effects of processing parameters on microstructure and hardness of the arc ion-plated TiN on a type 304 stainless steel. Thin Solid Films 375 (2000) 163
  • 233. Siegel R.W., Fougere G.E., Mechanical properties of nanophase metals, NanoStructured Materials, 6. (1995) 205
  • 234. Sobczak J., Wybrane aspekty nanotechnologii i nanomateriałów, Kompozyty 3 (2003) 385
  • 235. Sproul W.D., Rudnik P.J., Graham M.E., The effect of N2 partial pressure, deposition rate and substrate bias potential on the hardness and texture of reactively sputtered TiN coatings, Surf. Coat. Technol., 39-40 (1989) 355
  • 236. Staśkiewicz J., Czyżniewski A., Warstwy azotku tytanu otrzymywane zmodyfikowaną metodą reaktywnego stałoprądowego rozpylania magnetronowego, Materiały Konferencji Naukowo-Technicznej „Techniki wytwarzania warstw powierzchniowych metali:, Rzeszów 1988, 99
  • 237. Su Y.L., Yao S.H., Wei C.S., Kao W.H., Wu C.T., Influence of single- and multilayer TiN films on the axial tension and fatigue performance of AISI 1045 steel, Thin Solid Films 338 (1999) 177
  • 238. Sundgren J.-E., Johansson B.-O., Karlsson S.E., Hetzel T.G., Mechanisms of reactive sputtering of titanium nitride and titanium carbide. II: Morphology and structure, Thin Solid Films 105 (1983) 367
  • 239. Sundgren J.-E., Johansson B.-O., Karlsson S.E., Hetzel T.G., Mechanisms of reactive sputtering of titanium nitride and titanium carbide. III: Influence of substrate bias on composition and structure, Thin Solid Films, 105 (1983) 385
  • 240. Suryanarayana C., Koch C.C., Nanocrystalline materials – Current research and future directions, Hyperfine Interactions 130 (2000) 5
  • 241. Suslick K.S., Didenko Y., Fang M. M., Hyeon T., Kolbeck K. J., McNamaraIII W. B., Mdleleni M. M., Wong M., Acoustic cavitation and its chemical consequences. Phil. Trans. R. Soc. Lond. A 357 (1999) 335
  • 242. Szlufarska, I.; Nakano, A.; Vashista, P., A crossover in the mechanical response of nanocrystalline ceramics, Science 309 (2005) 911
  • 243. Tabor D., A theory of static and dynamic hardness. Engineering 165 (1948) 289
  • 244. Tagarielli V.L., Fleck N.A., Colella A., Matteazzi P., Mechanical properties and deformation mechanisms of nanocrystalline Fe/Cu 60/40 composites, J Mater Sci 46 (2011) 385
  • 245. Taniguchi, N.; On the Basic Concept of NanoTechnology, Proc. Intl. Conf. Prod. Eng. Tokyo, (Tokyo: Japan Society of Precision Engineering, 1974)
  • 246. Tian L., Zhu X., Tang B., Pan J., He J., Microstruture and mechanical properties of Cr-N coatings by ion-beam-assisted magnetron sputtering, Mat Sci Eng A 483-484 (2008) 751
  • 247. Tilbrook M. T., Paton D. J., Xie Z., Hoffman M., Microstructural effects on indentation failure mechanisms in TiN coatings: Finite element simulations, Acta Materialia 55 (2007) 2489
  • 248. Tjong S.C., Chen H., Nanocrystalline materials and coatings, Mat Sci Eng R 45 (2004) 1
  • 249. Travena D.H., Cavitation and tension in liquids. IOP Publishing Ltd 1987
  • 250. Trapezon A. G., Lyashenko B. A. Effect of the deposition and thickness parameters of titanium nitride (TiN) coatings on the fatigue strength, Strength of Materials 42 (2010) 675
  • 251. Tschopp M.A., McDowell D.L., Grain boundary dislocation sources in nanocrystalline copper, Scripta Materialia 58 (2008) 299
  • 252. Valli J., Mäkelä U., Matthews A., Murawa V., TiN coatings adhesion studies using the scratch test method, J. Vac. Sci. Technol. A, 3(6) (1985) 2411
  • 253. Valli J., Molarius J., Korhonen A.S., The effect of nitrogen content on the critical normal force in scratch testing of Ti-N films, Thin Solid Films, 154 (1987) 351
  • 254. Van Swygenhoven H., Caro A., Farkas D., Grain boundary structure and its influence on plastic deformation of polycrystalline FCC metals at the nanoscale: a molecular dynamics study, Scripta mater. 44 (2001) 1513
  • 255. Van Swygenhoven H., Derlet P. M., Frøseth A. G., Stacking fault energies and slip in nanocrystalline metals, Nature Materials 3 (2004) 399
  • 256. Van Swygenhoven H., Spaczer M., Farkas D., Caro A., The role of grain size and the presence of low and high angle grain boundaries in the deformation mechanism of nanophase ni: a molecular dynamics computer simulation, NanoStru Mater 12 (1999) 323
  • 257. Vershinin N., Filonov K., Straumal B., Gust W., Wiener I., Rabkin E., Kazakevich A., Corrosion behaviour of protective and decorative TiN coatings on large area steel strips, Surf. Coat. Technol. 125 (2000) 229
  • 258. Voevodin A.A., Bantle R., Matthews A., Dynamic impact wear of TiCxNy and Ti-DLC composite coatings, Wear 185 (1995) 151
  • 259. Vogel A., Lauterborn W., Timm R., Optical and acustic investigations of the dynamics of laser-producerd cavitation bubbles near a solid boundary, J.Fluid mech. 206 (1989) 299
  • 260. Von Neumann J., Discussion – shape of metals grains, Metal Interfaces, ASM, Cleveland, Ohio, USA 1952, 108
  • 261. Vyas B., Preece C.M., Stress produced in a solid by cavitation, Journal of Applied Physics 47 (1976) 5133
  • 262. Wang N., Wang Z., Aust K.T., Erb U., Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metallurgica et Materialia 43 (1995) 519
  • 263. Warren H., Hunt Jr., Nanomaterials: Nomenclature, Novelty, and Necessity, JOM 56 (2004) 13
  • 264. Wendorff Z., Kula P., Badanie zjawiska zachodzących w staliwie Hadfielda podczas odkształcania statycznego i dynamicznego, IX Konferencja Metaloznawcza Kraków 1977
  • 265. Wiklund U., Hedenqvist P., Hogmark S., Multilayer cracking resistance in bending, Surf. Coat. Technol. 97 (1997) 773
  • 266. Winning M., Stress-induced migration of tilt grain boundaries, Acta Mater. 58 (2008) 85
  • 267. Winning M., Gottstein G., Shvindlerman L.S., Stress induced grain boundary motion, Acta Materialia 49 (2001) 211
  • 268. Wnuk M.P., Podstawy mechaniki pękania, Wydawnictwo Naukowe AKAPIT, Kraków 2008
  • 269. Wójs K., Kawitacja w cieczach o różnych właściwościach reologicznych. Oficyna Wydawnicza Politechniki Wrocławskiej 2004
  • 270. Wood G.M., Knudsen L. K., Hammitt F.G., Cavitation damage studies with rotating disk in water, Trans. ASME Journal of Basic Engineering 89 (1967) 98
  • 271. Wu X., Zhu Y.T., Chen M.W., Ma E., Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni, Scripta Materialia 54 (2006) 1685
  • 272. Wyrzykowski J.W., Wpływ właściwości granic ziarn na granicę plastyczności metali, Wyd. Politechniki Warszawskiej 1987
  • 273. Wyrzykowski J.W., Pleszakow E., Sieniawski J., Odkształcanie i pękanie metali, WNT Warszawa 1999
  • 274. Xiaojun Z., Procopiak L.A.J., Souza N.C., d’Oliveira A.S.C.M., Phase transformation during cavitation erosion of a Co stainless steel, Materials Science and Engineering A358 (2003) 199
  • 275. Yakovleva T. Yu., Matokhnyuk L. E., Prediction of fatigue characteristics of metals at different loading frequencies, Strength of Mater. 36 (2004) 442
  • 276. Ye D., Matsuoka S., Nagashima N., Suzuki N., The low-cycle fatigue, deformation and final fracture behaviour of an austenitic stainless steel, Mat Sci Eng A 415 (2006) 104
  • 277. Yoon S.Y., Yoon S.Y., Chung W.S., Kim K.H., Impact-wear behaviors of TiN and Ti–Al–N coatings on AISI D2 steel and WC–Co substrates, Surf. Coat. Technol.177–178 (2004) 645
  • 278. Youssef K.M., Scattergood R.O., Murty K.L., Koch C.C., Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility, Scripta Materialia 54 (2006) 251
  • 279. Zhang Q., Wang X., Huang, Fenglei Ch. L., Guo X., An experimental and numerical study of the dynamic response of a free–free aluminium beam under high velocity transverse impact, Int. J Impact Eng. 36 (2009) 1385
  • 280. Zhang S., Duncan J. H., Chahine G.L., The final stage of the collapse of a cavitation bubble near a rigid wall, J Fluid Mech. 257 (1993) 147
  • 281. Zhang X.H., Liu D.X., Tan H.B., Wang X.F., Effect of TiN/Ti composite coating and shot peening on fretting fatigue behaviour of TC17 alloy at 350 °C, Surf. Coat. Technol. 203 (2009) 2315
  • 282. Zhang Y. S.; Han Z., Fretting wear behavior of nanocrystalline surface layer of pure copper under oil lubrication, Tribology Letters 27 (2007) 53
  • 283. Zhang Y., Wang Z. Cui Y., The cavitation behavior of a metastable Cr–Mn–Ni steel, Wear 240 (2000) 231
  • 284. Zhou J., Li Y., Zhu R., Zhang Z., The grain size and porosity dependent elastic moduli and yield strength of nanocrystalline ceramics. Mater. Sci. Eng. A 445–446 (2007) 717
  • 285. Zhou J., Xu N., Zhu R., Zhang Zh., He T., Cheng L., A polycrystalline mechanical model for bulk nanocrystalline materials using the energy approach, J Mater Process Tech. 209 (2009) 5407
  • 286. Zhou J., Zhu R., Zhang Z., A constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range. Mater. Sci. Eng.A 480 (2008) 419
  • 287. Zhou Y., Erb U., Aust K.T., Palumbo G., The effects of triple junctions and grain boundaries on hardness and Young’s modulus in nanostructured Ni–P, Scripta Materialia 48 (2003) 825
  • 288. Zhou Y.-K., Hammitt F.G., Cavitation erosion incubation period, Wear 86 (1983) 299
  • 289. Zou D., Yan D., Xiao L., Dong Y., Characterization of nanostructured TiN coatings fabricated by reactive plasma spraying, Surf. Coat. Technol. 202 (2008) 1928
  • 290. Krella A., Influence of cavitation intensity on X6CrNiTi18-10 stainless steel performance in the incubation period, Wear 258 (2005) 1723-1731
  • 291. Krella A., The influence of TiN coatings properties on cavitation erosion resistance, Surface & Coatings Technology 204 (2009) 263–270
  • 292. Krella A., Cavitation resistance of TiN nanocrystalline coatings with various thickness, Advances in Materials Science 9 (2009)12-24
  • 293. Krella A., Degradacja powłok TiN w warunkach kawitacji, Inżynieria Materiałowa 4/160 (2009) 245-248
  • 294. Krella A., 2010, Cavitation degradation model of hard thin PVD coatings, Advances in Materials Science 10 (2010) 27-36
  • 295. Krella A., An experimental parameter of cavitation erosion resistance for TiN coatings, Wear 270 (2011) 252-257
  • 296. Krella A., The new parameter to assess cavitation erosion resistance of hard PVD coatings, Engineering Failure Analysis 18 (2011) 855-867
  • 297. Krella A., Mechanizmy odkształcenia nanostrukturalnych materiałów, Inżynieria Materiałowa 5/183 (2011) 844-850
  • 298. Krella A., Czyżniewski A., Cavitation erosion resistance of Cr-N coating deposited on stainless steel. Wear 260 (2006) 1324-1332
  • 299. Krella A., Czyżniewski A., Influence of the substrate hardness on the cavitation erosion resistance of TiN coating, Wear 263 (2007) 395-401
  • 300. Krella A., Czyżniewski A., Wpływ osadzania nanostrukturalnych powłok na odporność kawitacyjną stali austenicznej X6CrNiTi18-10, Problemy Eksploatacji 4/2007; 167-174
  • 301. Krella A., Czyżniewski A., Investigation concerning the cavitation resistance of TiN coatings deposited on stainless steel at various temperatures, Wear 265 (2008) 72-80
  • 302. Krella A., Czyżniewski A. Cavitation erosion resistance of TiN coating deposited on stainless steel. Wear 265 (2008) 963-970
  • 303. Krella A., Czyżniewski A., Cavitation resistance of Cr-N coatings deposited on austenitic stainless steel at various temperature, Wear 266 (2009) 800-809
  • 304. Krella A., Steller J., Obciążenie kawitacyjne na stanowisku z szczelinowym wzbudnikiem kawitacji, Problemy Eksploatacji 76/1 (2010) 71-82
  • 305. Steller J., Krella A., On fractional approach to assessment of material resistance to cavitation, Wear 263 (2007) 402-411
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0009-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.