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Modeling of the vertical distribution of the sound speed in water is essential problem of 

hydroacoustics. There are many mathematics methods of modeling one variable functions. In the 

paper modeling of the one variable function for the vertical distribution of the sound speed in 

water using Bezier functions have been shown.

  

INTRODUCTION 

Knowledge about vertical distribution of the sound speed in water is essential issue in 

theory of acoustic wave’s propagation [1, 3], determination of the depth using acoustic methods 

[3, 7, 8], determination of measurement’s accuracy [10] and determination of acoustic wave 

reflection points in bathymetric surveys [3]. 

Many methods were been used for describing the vertical distribution of the sound speed in 

water [4, 5, 6, 7, 10, 11, 12, 13, 14], e.g. Uniform B-Splines, NonUniform Rational B-Splines 

NURBS and other well known interpolation methods [2]. 
  

1. BEZIER CURVES  

Let’s choose in free method a sequence of n+1 points  and let’s into consideration 

a broken line with these points. Now, we divide all n segments of his broken line in established 

proportion. This proportion can be described by one number parameter t: each section is divided 

in proportion: . Next, we receive n points, which are points of another broken line, which 

consists of  sections. This process is repeated for obtaining one point. One of Bezier curve 

definition described it as p curve, when each point of  p(t) can be constructed using adequate t. 
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Fig.1. De Casteljau algorithm of vertical distribution of sound speed in water 
 

Described algorithm is called Casteljau algorithm, when for ]1,0[t  corners are cut. As a 

result of this process, the broken line makes the curve. The iteration step can be written in the 

form [1]: 
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Start points are called control points, the output broken lines called Bezier control line. 

Looking for de Casteljau algorithm we can observe: 

Bezier curve is polynomial one: if there are n+1 control points, curve’s coordinates 

are described by polynomials of t variable of the degree not higher than n: so Bezier 

curve term is specific for individual polynomial curve representation; 

the curve has the convex property: for ]1,0[t  a point  lies on convex line of 

 points; 
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construction of the curve is affine constant: the picture of  points in free 

affine transformation determines the picture of the p curve in this transformation; 

npp ,...,0

occurs the interpolation of final points of the broken line: , 0)0( pp npp )1( . 
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2. BERNSTEIN POLYNOMIALS 

Bernstein polynomials of n – degree are defined by equation [1]: 
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These polynomials are linear independent. They determine the space base of polynomials 

of degree not more than n, because they are  n+1.  
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Fig.2. Graphs of Bernstein polynomials 

 

Bernstein polynomials  meet recurrent relationship [1]: 
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Polynomial  is equal to 1. For each n we also have , so for i = 0 and i = 

n  foregoing equation results from an agreement: 
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For n > 1, i = 1,…,n-1 
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Polynomials of higher and higher degrees can be obtained using the pattern, which is the 

generalization of Pascal triangle. 

Turned out, that control points of Bezier curve are coefficients of the curve in Bernstein 

polynomials space: 
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3. DEGREE ELEVATION  

Calculating 
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we obtain for i = 0,…,n+1 
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Obtained equation is well described, because in relationships for  and  indefinite 

points ,  are multiply by 0. In this way coefficients (control points) of output curve 

corresponding to Bernstein polynomial base of  n + 1 degree have been obtained. This process is 

called degree elevation. 
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Degree elevation can be used: for obtaining the freedom (the number of control points 

increases), for agreeing the representation of curves (curves joining, data export), in theoretic 

considerations. 

 

4. RESULTS  

Measurements of the vertical distribution of the sound speed in water have been done 

during hydrograprhic surveys of the Slupsk Bank in March, 2010 on the hydrographic vessel 

OH266. The area of the surveys has been shown below. 
 

 
 

Fig.3.  Hydrographic area of the Slupsk Bank 
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Fig.4.  Real and approximated vertical distributions of the sound speed in water  

– 25-th of March, 2010: 12:00 and 20:00 

 
Fig.5.  Real and approximated vertical distributions of the sound speed in water  

– 26-th and 27-th of March, 2010 
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5. CONCLUSIONS 

Approximation of the nonlinear one variable function is usable in hydroacoustics for 

modeling vertical distribution of the sound speed in water. Used algorithms make possible to 

determinate the depth as the function of the sound speed in water, and also modeling the 

trajectory of the acoustic ray as the result of the refraction 
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