PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of trabecular bone properties using ultrasonic scanne

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Signals scattered in trabecular bone contain information about properties of the bone structure. Evaluation of this properties may be essential for osteoporosis diagnosis and treatment monitoring because the standard densitometry does not provide complete information about the bone strength. It was previously demonstrated that using numerical model of backscattering in trabecular bone it is possible to estimate some microstructural characteristics of bone. Model predicts departures from the Rayleigh statistics of the scattered signal envelope depended on the scatterer physical parameters and its shape uniformity. This study concerns examination of trabecular bone (calcaneus) in vivo. Ultrasonic bone scanner operating at frequency of 1,5 MHz was used to collect backscattered signals. Data were processed in order to obtain the statistical properties of the signal envelope and to compare them with histograms resulting from modeling. This study is an approach towards developing a tool for the investigation of scattering in trabecular bone that can potentially provide clinically useful information about bone strength and condition.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
39--52
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
autor
  • Department of Ultrasound Institute of Fundamental Technological Research Polish Academy of Sciences ul. Pawińskiego 5B, PL-02-106 Warszawa, Poland, lcieslik@ippt.gov.pl
Bibliografia
  • [1] J. Bamber, C. Hill, J. King, Acoustic properties of normal and cancerous human liver, Ultrasound in Medicine and Biology, Vol. l7, 121-133, 1981.
  • [2] B. I. Raju, M. A. Srinivasan, Statistics of Envelope of Hifg-Frequency Ultrasonic Backscatter from Human Skin In Vivo, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 49, 871-882, 2002.
  • [3] S. Chaffaí, V. Roberjot, F. Peyrin, G. Berger, P. Laugier, Frequency dependence of ultrasonic backscattering in cancellous bone: Autocorrelation model and experimental results, Journal of the Acoustical Society of America, Vol. 108 (5), 2403-2411, 2000.
  • [4] S. Chaffaí, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, P. Laugier, Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure, Bone, Vol. 30 (1), 229-237, 2002.
  • [5] M. Hakulinen, J. Töyräs, S. Saarakkala, J. Hirvonen, H. Kröger, Ability of ultrasound backscattering to predict mechanical properties of bovine trabecular bone, Ultrasound in Medicine and Biology, Vol. 30 (7), 919-927, 2004.
  • [6] D. Hans, P. Dargent-Moline, A. Schott, J. Sebert, C. Cormier, P. Kotski, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the Epidos prospective study, Lancet, Vol. 348 (9026), 511-514, 1996.
  • [7] A. Hosokawa, T. Otani, Ultrasonic wave propagation in bovine cancellous bone, Journal of the Acoustical Society of America, Vol. 101, 558-562, 1997.
  • [8] F. Jenson, F. Padilla, P. Laugier, Prediction of frequancy-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model, Ultrasound in Medicine and Biology, Vol. 29, 455-64, 2003.
  • [9] M. Kothari, T. Keaveny, J. Lin, D. Newitt, S. Majumdar, Measurement of intraspecimen variation in vertebral cancellous bone architecture, Bone, Vol. 25 (2), 245–250, 1999.
  • [10] C. Langton, The role of ultrasound in the assessment of osteoporosis, Clinical Rheumatology, Vol. 13 suppl. 1, 13-17, 1994.
  • [11] P. Laugier, P. Giat, G. Berger, New ultrasonic methods of quantitative assessment of bone status, European Journal of Ultrasound, Vol. 1, 23-38, 1994a.
  • [12] P. Laugier, P. Giat, G. Berger, Bone characterization with ultrasound: state of art and new proposal, Clinical Rheumatology, Vol. 13 suppl. 1, 22-32, 1994b.
  • [13] P. Laugier, P. Giat, C. Chappard, Ch. Roux, G. Berger, Clinical assessment of the backscatter coefficient in osteoporosis, 1997 IEEE Ultrasonic Symposium, 1101-1105, 1997.
  • [14] P. Laugier, F. Padilla, E. Camus, S. Chaffai, C. Chappard, F. Peyrin, M. Talmant, G. Berger, Quantitative ultrasound for Bone Status Assessment, IEEE Ultrasonic Symposium Proceedings, Vol. 2, 1341-1350, 2000.
  • [15] J. Litniewski, Wykorzystanie fal ultradźwiękowych do oceny zmian struktury kości gąbczastej, IPPT PAN, 113-117, Warszawa, 2006.
  • [16] J. Litniewski, Statistical Sensitivity of the Envelope of Pulse-Echo Signal Backscattered in Trabecular Bone: Simulation Study, 2007 International Congress on Acoustics, 6, 2007.
  • [17] J. Litniewski, A. Nowicki and P. A. Lewin, Semi-empirical bone model for determination of trabecular structure properties from backscattered ultrasound, Ultrasonics, Vol. 49, 505-513, 2009.
  • [18] J. Litniewski, A. Nowicki, J. Wojcik, Ultrasonic characterization of cancellous bone using three models of trabecular structure, Proceedings of 59th Meeting of Acoustical Society of America, 2010.
  • [19] F. L. Lizzi, M. Ostromogilsky, I. Feleppa, M. Rotke, M. Yaremko, Relationship of ultrasound spectral parameters to features of tissue microstructure, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 33, 319-328, 1986.
  • [20] R. Molthen, P. Shankar, J. Reid, Characterization of ultrasonic B-scans using non-Rayleigh statistics, Ultrasound in Medicine and Biology, Vol. 21, 161-170, 1995.
  • [21] R. Molthen, P. Shankar, J. Reid, F. Forsberg, V. Narayanan, E. Halpern, C. Piccoli, B. Goldberg, Comparison of the Rayleigh and K-distribution models using in vivo breast and liver tissue, Ultrasound in Medicine and Biology, Vol. 24, 93-100, 1998.
  • [22] A. Myśliwski, P. Trzonowski, M. Okrój, Z. Dobrzańska, Atlas histologiczny, Wydawnictwo Pedagogiczne OPERON, 22, Gdańsk, 2002.
  • [23] A. Myśliwski, Podstawy cytofizjologii i histofizjologii, AMG, 87-89, Gdańsk, 2007.
  • [24] A. Nowicki, Wstęp do ultrasonografii, Podstawy fizyczne i instrumentacja, Medipage, 46-47, Warszawa, 2003.
  • [25] F. Padilla, F. Peyrin, P. Laugier, Prediction of backscattered coefficient in trabecular bones using a numerical model of tree-dimensional microstructure, Journal of the Acoustical Society of America, Vol. 113 (2), 1122-1129, 2003.
  • [26] W. Pereira, S. Bridal, A. Coron, P. Laugier, Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 51, 302-12, 2004.
  • [27] P. Thomson, J. Taylor, R. Oliver, A. Fisher, Quantitative ultrasound (QUS) of the heel predicts wrist and osteoporosis related fractures in women ages 45-75 years, Journal of Clinical Densitometry, Vol. 1, 219-225, 1998.
  • [28] K. Wear, B. Garra, Assessment of bone density using ultrasonic backscatter, Ultrasound in Medicine and Biology, Vol. 24 (5), 689-695, 1998.
  • [29] K. Wear, Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment, Journal of the Acoustical Society of America, Vol. 106 (6), 3659-3664, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0007-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.