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The paper presents a description of the problems with fluid flow around a ship. Using 

the described solution of the problem were performed numerical calculations using the 

boundary element method. Were also presented preliminary results of the calculation of 

pressure fields at the bottom of the ship, taking into account the impact of the bottom. 

 

 

INTRODUCTION 

 

Pressure field around a ship moving at a constant speed on calm water, have a static 

character in the moving coordinate system associated with him (SM - system mobile). The 

stationary system associated with the land (SS - an immovable property), this field is 

characterized by dynamic changes of a different time period. Elapsed for the checkpoint, she 

observed an initial increase in pulse pressure with a relatively short duration, then generally 

long-term decline in pressure for vessels with an average length (period and amplitude of this 

phenomenon we may call respectively the primary period of the pressure on ship - PPPS and 

amplitude of the pressure drop ship - APDS), then again increases the pressure pulse when 

passing the stern. Time passing by a point in the SS, she is equal to the quotient of the length 

between perpendiculars Lpp and ship speed Vs as T0 = Lpp / Vs, (PPPS   T0).  

For larger ships moving with considerable speed may not occur aft pressure pulse 

(followed by flow separation at the stern and the base period is increasing, PPPS > T0) or 

may receive an extra boost pressure during the mid-beam, (with the creation of k pulse 

pressure increase base period may be as high as PPPS  T0 / (k-1)). However, the amplitude 

of the pressure drop APDS  is a fraction of stagnation pressure q = ( Vs
2
)/2 and equal to the 

APDS = f(L,B,T,Cb,r)*q . This fraction is a function f (L, B, T, Cb, r) depends on the ship's 

main dimensions and their relations that is the shape of the ship hull and the distance r from 

the checkpoint of the ship. "At a given shape of the ship (eg, resulting from the good 

properties of resistance) function f(L,B,T,Cb,r)  = const  C1/r
4
 i APDS = C2* Vs

2
 , where the 
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constant C2(r)  (C1/r
4
)* /2, ie, the amplitude of the pressure drop becomes dependent only 

on the ship's speed and distance of the checkpoint. APDS will decrease so will automatically 

reduce the operating speed of the ship to the speed limit Vs:  

Vlimit=(APDS / C2 )
1/2

 . 

When moving the ship on a stormy sea, overlapping systems of waves of the ship and 

wind waves significantly shorten PPPS.  

Possible changes in the value of f(L,B,T,Cb,r) ,and thus the value of a constant C2, is 

much greater at the stage of ship design. This allows  to change the size APDS without 

changing the operating speed Vs . Much cheaper than changing the way APDS are changes in 

speed of the ship, at a distance r equals the change in period PPPS. 

For the purposes of a preliminary numerical analysis based upon the preliminary 

program of the described method for calculation of flow around the ship and hydrodynamic 

fields. Singularities in the form of a single layer spread over the surface of moistened 

simplified shape of the vessel and at the bottom. For the same shape and the small value of 

the Froude  number hydrodynamic field results are correct. For higher speeds it is necessary 

to extend a single layer on the free surface area surrounding the ship.  

The results obtained using numerical calculation methods of fluid mechanics (CFD) 

and the results of the experiments will help to develop an algorithm allowing the required 

accuracy without having to use labor intensive methods to determine the parameters of the 

ship pressure. These algorithm will also adjust the operating parameters on the maximum safe 

in relation to risk of execution of the ship mission under special conditions.  

 

 

1. THE MATHEMATICAL MODEL OF THE WATER FLOW AROUND THE SHIP 

 

The ship runs at a speed of v0 = const. Determination of the pressure and velocity 

fields in fluid flow around the hull of the ship will be made by solving linearized problem 

formulated by the following equation of continuity of flow (Laplace equation for the velocity 

potential ) and the boundary conditions at the bottom and the free surface and away from the 

ship's vertical surfaces defining the closed area around the vessel.  

The equations were formulated in the coordinate systems Oxyz, O  , the first of 

which inertial coordinate system, the x-axis located on the free surface and directed towards 

the ship's velocity vector v0 and z-axis directed downward vertical, coinciding with the second 

only at the beginning of the movement. The second movable coordinate system rigidly linked 

to the hull of the ship. A mathematical model of fluid motion surrounded the ship describe the 

equations :  

 

                                                                 (2.1) 

                                         (2.2) 

                                                           (2.3) 

                                                        (2.4) 

                                                            (2.5) 

                                                (2.6) 
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where: h - water depth, b - width of a multiple of the ship, S - wetted surface ship 

moving at a speed v0 progressive,  - ship wetted surface property, n - vector normal to the 

surface in equation (2.5) to the surface ship hull, g - gravitational acceleration vector. 

The velocity potential  is determined by the method of Kirchhoff-splitting layer 

sources on the surface S, so. single layer of the first type. To determine the potential  must 

know the potential sources moving uniformly with velocity v0 at the free surface of water, 

called the Havelock source function as well as Green's function for the source of the 

following form:  

                                          (2.7) 

where:  - radius vector.  

Green's function has the form:  

                                  (2.8) 

where the points M and N are the coordinates of, respectively: M(x, y, z), N ( , , ).  

The potential  at the point M from the source unit at the point of N has the form:  

                                      (2.9) 

This potential, as a solution of the Poisson equation as follows,  

                                                      (2.10) 

has the integral form:  

                                (2.11) 

when:  . 

 

After applying the Fourier transform and use Residue Theorem and Jordan's lemma, 

by [3,4], Green's function for a source moving in the unrestricted area take the form of :  

 

               (2.12) 

 

Potential and the Green's functions for the source of a moving near free surface in 

deep and shallow water is obtained by following the same, by [4]. 

Consider the first case of deep water, when the source of constant expense Q is at 

point N( , , ) and moves at a speed of v0 in the direction of the axis Ox in the deep water.  

The velocity potential  is determined by formulas (2.7-8) and satisfies the Laplace 

equation with boundary conditions (2.2-3). Source of N ( , , ) is accompanied by a point 

source N1 ( , ,- ) moving with the first. Substituting the expression for  in the form :  

 

                                             (2.13) 

where r=  , r1=  , 

 

insert into Laplace's equation :  

 

                                                             (2.14) 

 

and the boundary condition at the bottom of sea:  

 

                                                      (2.15) 
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Substituting relation (2.7) to the boundary condition (2.2) for z = 0 were obtained:  

 

                  (2.16) 

 

1/r1 dependence by (2.12) obtains the form : 

 

                                  (2.17) 

 

However, formula (2.12) in pursuit of the free surface of the z  0 converges to the 

equation:  

                                    (2.18) 

 

where: w= (x- )cos +(y- )sin . 

As for the z=0 

                                                     (2.19) 

 

and condition (2.16) take the form of: 

 

                                        (2.20) 

 

When you differentiate (2.17) and substituting into (2.20) becomes a boundary 

condition: 

          (2.21) 

 

After re-applying the method of integral Fourier transformation according to [4] 

obtained the Green's function G1 form below:  

                   (2.22) 

And the potential  has a solution: 

 

                                    (2.23) 

 

Using the above relation and relation (2.6) obtained the formula for the wave profile : 

 

                         (2.24) 

and, after the differentiation and substituting (2.22) : 

                      (2.25) 

Consider the second case for the shallow water, when the source of constant expense 

Q is at point N ( , , ) and moving at a speed v0 in the direction of the axis Ox in water depth 

h. Coordinate systems Oxyz, O  are associated with a source. Source of N ( , , ) is 
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accompanied by a source at the point N1 ( , , -2h), moving with the first. By introducing 

some simplifications write, K0= , µ1 =  , equations describing the problem take the form:" 

 

                                                                 (2.26) 

                                         (2.27) 

  

                                                          (2.28) 

and the boundary condition at the bottom : 

 

                                                      (2.29) 

and : 

                                    (2.30) 

 

Where r and r1 see (2.17-18) taking into account the different position of the N1( , , -

2h). Proceeding similarly as in the case of deep water was obtained the following relationship 

for the Green's function for the shallow water and free surface: 

 

    (2.31) 

 

and potential  from equation (2.30). 

 

2. THE CALCULATION OF THE WATER FLOW AROUND THE SHIP. MODELLING 

OF THE SHIP WATER FLOW WITH THE SINGLE LAYER AND/OR DOUBLE LAYER 

 

Solution of the problem will be through the designation of potential in terms of linear 

speed. The function G (M, N) will be determined taking into account the linear boundary 

condition on the free surface. Surface on which the singularities are spreading Ss is equal to 

the hull surface S and at the same time it is wetted surface area  ship property, ie, Ss = S = 

. The free surface SF within the hull, so. SF0, is the area of the waterline SWL. The limit of 

the volume displacement of the ship and a closing surface area of this volume is marked as: 

V =  + SWL .  

The relationship describing the velocity potential  takes the form:  

 

      (3.1) 

If we assume that on the surface of a moist hull  are spread only source qs (N), on the 

waterline SWL only dipoles  (N) and on the surface of the hull there is not the potential jump, 

then formula (3.1) the potential  take the form : 

      (3.2) 

Then, taking into account that there is an equation on SWL : 

                               (3.3) 

what will save the equation (3.2) in the form as follows:. 
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                        (3.4) 

Boundary condition on the surface of Ss leads to the following equation describing the 

distribution of qs (N) at Ss = , and  (N) for SWL: 

      (3.5) 

where the differentiation in the normal direction at the point N ( , , ) - (location of 

singularities), we describe as , while differentiation at the point M (x, y, z) as  . 

As is apparent from the above formulas, timetables sources qs (N) and distributions of 

dipoles (N) are not dependent on each other. The question is whether, for example part of 

the surface V, such as the ship's waterline SWL, it can be reset? The answer to this and 

similar questions can give a numerical study compared with the results of experiments. In 

case of confirmation of such a possibility these patterns to simplify the form as below:  

potential : 

                                           (3.6) 

distributions of sources in the form : 

                           (3.7) 

Numerical solution of this equation is obtained using the boundary element method. 

This solution describes the distribution of singularities on the surface of the ship hull Ss and 

other strongly interacting at the flow of surfaces, such as Sd bottom surface (especially in the 

shallow water flow).  

Using a single layer and method for allocating the surface V of the panels, the 

solution of the integral equation (3.6) we obtain from the condition of impervious surface. 

Solution to the problem boils down to solving the system of linear equations in the following 

form :  

                                        (3.8) 

where the elements of the matrix effects Aij are in the form:  

 

                                                      (3.9) 

                                                            (3.10) 

where: 

Aij - projection of velocity induced by the singularity of a panel of the unit j on the 

panel i, and the direction normal to the i-th panel  , 

 – length of the vector from the j-th to the i-th panel", 

 - surface area of the j-panel.  

Using a double layer, in turn, obtained the system of equations will have the form : 

 

                                        (3.11) 

 

where the elements of the matrix effects Aij are in the form:  

 

                 (3.12) 

                                                            (3.13) 

where the sign above, see (3.10). 
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3. THE NUMERICAL SOLUTION OF THE PROBLEM 

 

Based on the above address theoretical issues has been developed a model for the 

preliminary numerical tests. Single layer has been deployed on the surface of the hull of the 

ship and at the bottom, V=Ss+ .  

For the numerical studies adopted a simplified pre-shape of the hull. Surface of the 

hull was divided into square panels, in which the center of gravity placed checkpoints C. It 

was assumed that the total expenditure on the panel is concentrated in point C. Used of a 

single layer.  

 

4. EXAMPLE RESULTS OF CALCULATIONS 

  

Sample results of calculations show the distribution of pressure at the bottom of the 

ship with simplified elliptical shapes. The center of the ship is in place to coordinate x = 0 . 

The first chart shows the distribution of pressure at the bottom, and the second 

distribution of hydrodynamic pressure.  

Dimensions of the ship and its speed have the following values:  

- length of the ship, L  =  40m, - width of the ship, B  =  8m, - draft of the ship, T  =  

6m, - velocity, v  =  3 knots, - atmospheric pressure, pa =  10.1325 kPa, - water density,   =  

998 kg/m3, - bottom depth, h  =  10m. 

 

5. CONCLUSIONS 

 

Preliminary assessment of the results of calculations can be defined as the correct 

values of pressure amplitude APDS. But it is not possible to define the basic pressure field 

PPPS period. This is due to the lack of pressure impulse from the waves of ship’s bow and 

ship’s stern . To describe this phenomenon is necessary to include in the algorithm and the 

mathematical model of the phenomenon of free surface deformation. This will affect the 

distribution of a single layer on the surface of free water around the ship SF and met there the 

boundary condition in the form of equation (2.6).  

 

-50
-40

-30
-20

-10
0

10
20

30
40

50

-10

-8

-6

-4

-2

0

2

4

6

8

10

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

x[m]

hydrodynamic pressure distribution on the bottom of the ship at a depth h = 10m

y[m]

P
 [

P
a

]

-1000

-800

-600

-400

-200

0

200

 
 

Fig.1. Distribution of hydrodynamic pressure at the bottom of the ship 
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