PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stochastic modelling of turbulent flows

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
Twórcy
autor
Bibliografia
  • 1. ANAND M.S., HSU A.T. & POPE S.B. (1997) Calculations of swirl combustors using joint velocity-scalar probability density function method, AIAA J. 35, 1143-1150.
  • 2. ANAND M.S., POPE S.B. & MONGIA H.C. (1989) A PDF method for turbulent recirculating flows. In: Turbulent Reactive Flows, Lecture Notes in Engineering, pp. 672-693, Springer-Verlag.
  • 3. ANTONIA R.A., TEITEL M., KIM J. & BROWNE L.W.B. (1992) Low-Reynolds effects in a fully developed turbulent flow. J. Fluid Mech. 236, 579.
  • 4. ARNOLD L. (1974) Stochastic differential equations: theory and applications. Wiley, New York.
  • 5. AUBRY N., HOLMES P., LUMLEY J.L., STONE E. (1988) The dynamics of coherent structures in the wall region of turbulent boundary layer. J. Fluid Mech. 192, 115-173.
  • 6. BATCHELOR G.K. (1953) The theory of homogeneous turbulence. Cambridge University Press.
  • 7. BERKOOZ G., HOLMES P., LUMLEY J.L. (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539-571.
  • 8. BILGER R.W., SAETRAN L.R., & KRISHNAMOORTHY L.V. (1991) Reaction in a scalar mixing layer. J. Fluid Mech. 233, 211-242.
  • 9. BlRDSALL C.K. AND Fuss D. (1969) Clouds-in-Clouds, Clouds-in-Cells physics for many-body plasma simulation. J. Comput. Phys. 3,494-511. [Reprinted in J. Comput. Phys. 135 (1997), 141-148.]
  • 10. RADSHAW P. (1971) An introduction to turbulence and its measurement. Pergamon Press, Oxford.
  • 11. BRADSHAW P. (1994) Turbulence: the chief outstanding difficulty of our subject. Exp. Fluids 16, 203-216.
  • 12. UKASA T., POZORSKI, J. & MlNlER J.P. (2000) PDF computation of thermal mixing layer in grid turbulence, In: Advances in Turbulence VIII (Ed: C. Dopazo), CIMNE, Barcelona, pp. 219-222.
  • 13. CAMBON C. (2002) Introduction to two-point closures. In: Closure strategies for turbulent and transitional flows (Eds. B.E. Launder & N.D. Sandham), Cambridge University Press, pp. 299-327.
  • 14. CAMBON C. & SCOTT J.F. (1999) Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech. 31, 1-53.
  • 15. CANTWELL B.J. (1981) Organized motion in turbulent flow. Annu. Rev. Fluid Mech. 13, 457-515.
  • 16. CHAMPAGNE F.H., PAO Y.H. & WYGNANSKI I.J. (1976) On the two-dimensional mixing region. J. Fluid Mech. 74, 209-250.
  • 17. CHEN H., CHEN S. & KRAICHNAN R.H. (1989) Probability distribution of stochastically advected scalar field. Phys. Rev. Lett. 63, 2657-2660.
  • 18. CHEN S. & DOOLEN G.D. (1998) Lattice Boltzmann methods for fluid flows. Annu. Rev. Fluid Mech. 30, 329-364.
  • 19. CHORIN A.J. (1973) Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785-796.
  • 20. CHORIN A.J. (1994) Vorticity and turbulence. Springer.
  • 21. CLEARY P.W. (1998) Modelling confined multi-material heat and mass flows using SPH. Appl. Math. Modelling 22, 981-993.
  • 22. COLUCCI P.J., JABERI F.A., GIVI P. & POPE S.B. (1998) The filtered density function for large-eddy simulation of turbulent reactive flows. Phys. Fluids 10, 499-515.
  • 23. COMTE-BELLOT G. (1961) Ecoulement turbulent en conduite. Seminaire de Turbulence organise par 1' Academie des Sciences de Pologne, Jabłonna.
  • 24. COMTE-BELLOT G. (1965) Ecoulement turbulent entre deux parois paralleles. Publ. Scientifiques et Techniques du Ministere de 1'Air, Paris.
  • 25. COTTET G.H. & KOUMOUTSAKOS P. (2000) Vortex methods, theory and practice. Cambridge University Press.
  • 26. CROWE C.T. (1982) Review - Numerical Models for Dilute Gas-Particle Flows. ASME J. Fluids Engng 104, 297-303.
  • 27. D'AGOSTINO L. & BRENNEN C.E. (1989) Linearized dynamics of spherical bubble clouds. J. Fluid Mech. 199, pp. 155-176.
  • 28. DELARUE B. & POPE S.B. (1997) Application of PDF methods to compressible turbulent flows. Phys. Fluids 9, 2704-2715.
  • 29. DENG B., WU W. & Xl S. (2001) A near-wall two-equation heat transfer model for wall turbulent flows. Int. J. Heat Mass Transfer 44, 691-698.
  • 30. DOPAZO C. (1979) Relaxation of initial probability density functions in the turbulent convection of scalar fields. Phys. Fluids 22, 20-30.
  • 31. DOPAZO C. (1994) Recent developments in in PDF methods. In Turbulent reacting flows (Eds. Libby P.A. & Williams F.A.), Academic Press, New York, pp. 375-474.
  • 32. DOPAZO C, VALINO L. & MARTIN J. (1993) Velocity gradients in turbulent flows. Stochastic models. 9th Int. Symposium on Turbulent Shear Flows, 16-18 August, Kyoto, Japan.
  • 33. DREEBEN T.D. & POPE S.B. (1992) Nonparametric estimation of mean fields with application to particle methods for turbulent flows. Rep. no. FDA 92-13, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York.
  • 34. DREEBEN T.D. & POPE S.B. (1997) Wall-function treatment in PDF methods for turbulent flows. Phys. Fluids 9, 2692-2703.
  • 35. DREEBEN T.D. & POPE S.B. (1998) PDF/Monte Carlo simulation of near-wall turbulent flows. J. Fluid Mech. 357, 141-166.
  • 36. DROBNIAK S. (2002) Turbulence, from stochastic to deterministic approach. Trans. IFFM 110, 103-114.
  • 37. DURBIN P.A. (1993) A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465-498.
  • 38. DURBIN P.A. & PETTERSSON-REIF B.A. (2002) The elliptic relaxation method. In: Closure strategies for turbulent and transitional flows (Eds. B.E. Launder & N.D. Sandham), Cambridge University Press.
  • 39. URBIN P.A. & SPEZIALE C.G. (1994) Readability of second moment closure via stochastic analysis. J. Fluid Mech. 280, 395-407.
  • 40. DURST F., JOVANOVIC J. & SENDER J. (1995) LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech. 295, 305-335.
  • 41. EATON J. & FESSLER J.R. (1994) Preferential concentration of particles by turbulence. Int. J. Multiphase Flow 20, Suppl., 169-209.
  • 42. ELSNER J.W. (1987) Turbulencja przepływów. PWN, Warszawa.
  • 43. ESWARAN V. & POPE S.B. (1988) Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506-520.
  • 44. FARGE M. (1992) Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 359-457.
  • 45. FARGE M., SCHNEIDER K. & KEVLAHAN N. (1999) Non-gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11, 2187-2201.
  • 46. Fox R.O. (1994) Improved Fokker-Planck model for the joint scalar, scalar gradient PDF. Phys. Fluids 6, 334-348.
  • 47. Fox R.O. (1996) Computational methods for turbulent reacting flows in the chemical process industry. Revue de I'Institut Francois du Petrole 51, 215-243.
  • 48. FRISCH U. (1996) Turbulence. Cambridge University Press.
  • 49. GARDINER C.W. (1990) Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, corrected 2nd ed. Springer-Verlag, Berlin.
  • 50. GATSKI T.B. (1997) Modeling compressibility effects on turbulence. In: New tools in turbulence modelling (Eds. O. Metais & J. Ferziger), Springer.
  • 51. GESHEV P.I. (1978) The influence of thermal conductivity of the wall on the value of the turbulent Prandtl number in a viscous sublayer. Inzhenerno-Fizicheskij Zhurnal 35, 292-296 (in Russian).
  • 52. GHONIEM A.F. & SHERMAN F.S. (1985) Grid-free Simulation of Diffusion Using Random Walk Methods. J. Comput. Phys. 61, 1-37.
  • 53. GiCQUEL L. Y.M., Givi P., JABERI F.A. & POPE S.B. (2002) Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14, 1196-1213.
  • 54. GIRIMAJI S.S. & POPE S.B. (1990) A diffusion model for velocity gradients in turbulence. Phys. Fluids A 2, 242-256.
  • 55. GOLDSTEIN S. (1969) Fluid mechanics in the first half of this century. Annu. Rev. Fluid Mech. 1, 1-28.
  • 56. HAMBA F. (2002) An approach to hybrid RANS/LES calculation of channel flows. In: Engineering Turbulence Modelling and Measurements 5 (Eds. W. Rodi & N. Fueyo), pp. 297-305, Elsevier, Amsterdam.
  • 57. HAMMIT F.G. (1980) Cavitation and multiphase flow phenomena, McGraw-Hill, New York.
  • 58. HANJALIĆ K. & JAKIRLIĆ S. (2002) Second-moment turbulence closure modelling. In: Closure strategies for turbulent and transitional flows (Eds. B.E. Launder & N.D. Sandham), Cambridge University Press.
  • 59. HAWORTH D.C. & EL TAHRY S.H. (1991) Probability density function approach for multidimensional turbulent flow calculations with application to in-cylinder flows in reciprocating engines. AIAA J. 29, 208-218.
  • 60. HAWORTH D.C. & POPE S.B. (1986) A generalized Langevin model for turbulent flows. Phys. Fluids 29, 387-405.
  • 61. HAWORTH D.C. & POPE S.B. (1987) A pdf modeling study of self-similar turbulent free shear flows. Phys. Fluids 30, 1026-1044.
  • 62. HE J. & SIMONIN O. (1995) Numerical modelling of dilute gas-solid turbulent flows in vertical channel. Electricite de France Report No.95NB00009, Chatou.
  • 63. HEINZ S. (1998) Time scales of stratified turbulent flows and relations between second-order closure parameters and flow numbers. Phys. Fluids 10, 958-973.
  • 64. HINZE J.O. (1975) Turbulence, 2nd ed. McGraw-Hill, New York.
  • 65. HOCKNEY R.W. & EASTWOOD J.W. (1981) Computer simulations using particles. McGraw-Hill, New York.
  • 66. HOLMES P., LUMLEY J.L. & BERKOOZ G. (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press.
  • 67. HUANG K. (1963) Statistical mechanics. Wiley, New York. [Polish translation: (1978) Mechanika statystyczna. PWN, Warszawa.]
  • 68. HUNT J.CR. & CARRUTHERS D.J. (1990) Rapid distortion theory and the of 'problems' of turbulence. J. Fluid Mech. 212, 497-532.
  • 69. JOHANSSON A.V. (2002) Engineering turbulence models and their development. In: Theories of turbulence (Eds. M. Oberlack & F.H. Busse), Springer-Verlag.
  • 70. JOHANSSON A.V. & WlKSTRÖM P.M. (1999) DNS and modelling of passive scalar transport in turbulent channel flow with a focus on scalar dissipation rate modelling. Flow, Turbul. Combust. 63, 223-245.
  • 71. JONES W.P.(2002) The joint scalar probability density function. In: Closure Strategies for Turbulent and Transitional Flows (Eds. B.E. Launder & N.D. Sandham), Cambridge University Press, pp. 582-625.
  • 72. KALOS M.H. & WHITLOCK P.A. (1986) Monte Carlo Methods. Wiley.
  • 73. KARCZ M. & BADUR J. (2003) A turbulent heat flux two-equation 012-ε0 closure based on the V2F turbulence model. TASK Quart. 7, 375-387.
  • 74. KARLIN S. (1966) A first course in stochastic processes. Academic Press, New York.
  • 75. KASAGI N., KURODA A. & HIRATA M. (1989) Numerical investigation of near-wall turbulent heat transfer taking into account the unsteady heat conduction in the solid wall. / Heat Transfer 111, 385-392.
  • 76. KASAGI N., TOMITA Y. & KURODA A. (1992) Direct numerical simulation of passive scalar field in a turbulent channel flow. J. Heat Transfer 114, 598-606.
  • 77. KASSINOS S.C. & REYNOLDS W.C. (1994) A structure-based model for the rapid distortion of homogeneous turbulence. Report No. TF-61, Thermosciences Division, Department of Mechanical Engineering, Stanford University.
  • 78. KASSINOS S.C. & REYNOLDS W.C. (1996) A particle representation model for the deformation of homogeneous turbulence. Annual Research Briefs, pp. 31-51, Center for Turbulence Research, Stanford University.
  • 79. KASSINOS S.C, LANGER C.A., HAIRE S.L. & REYNOLDS W.C. (2000) Structure-based turbulence modeling for wall-bounded flows. Int. J. Heat Fluid Flow 21, 599-605.
  • 80. KAWAMURA H., ABE H. & MATSUO Y. (1999) DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. Int. J. Heat Fluid Flow 20, 196-207.
  • 81. KAWAMURA H., OHSAKA K., ABEH. & YAMAMOTOK. (1998) DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. Int. J. Heat Fluid Flow 19, 482-491.
  • 82. KAYS W.M. (1994) Turbulent Prandtl numer-where are we? J. Heat Transfer 116, 285-295.
  • 83. KIM J. & MOIN P. (1989) Transport of passive scalars in a turbulent channel flow. In: Turbulent Shear Flows VI, Springer, pp. 85-96.
  • 84. KLOEDEN P.E. & PLATEN E. (1992) Numerical Solution of Stochastic Differential Equations. Springer.
  • 85. KONG H., CHOI H. & LEE J.S. (2000) Direct numerical simulation of turbulent thermal boundary layers. Phys. Fluids 12, 2555-2568.
  • 86. KUDELA H. (1995) Modelowanie zjawisk hydrodynamicznych metodami dyskretnych wirów. Wydawnictwo Politechniki Wrocławskiej.
  • 87. LAUNDER B.E. (1988) On the computation of convective heat transfer in complex turbulent flows. J. Heat Transfer 110, 1112-1128.
  • 88. LAUNDER B.E. (1991) Current capabilities for modelling turbulence in industrial flows. Appl. Sci. Res. 48, 247-269.
  • 89. LAUNDER B.E. (1996) An introduction to single-point closure methodology. In: Simulation and modeling of turbulent flows (Eds. TB. Gatski, M.Y Hussaini & J.L. Lumley), Oxford University Press, pp. 243-310.
  • 90. LAUNDER B.E., REECE G.J. & RODI W. (1975) Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537.
  • 91. LELE S.K. (1994) Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26, 211-254.
  • 92. LESIEUR M. (1997) Turbulence in Fluids, 3rd enlarged edition. Kluwer, Dordrecht.
  • 93. LI J.D. & BILGER R.W. (1996) The diffusion of conserved and reactive scalars behind line sources in homogeneous turbulence. J. Fluid Mech. 318, 339-372.
  • 94. LIBBY P.A. & WILLIAMS F.A. (1980) Fundamental aspects. In: Turbulent Reacting Flows (Eds. Libby P.A. & Williams F.A.), Springer, pp. 1-43.
  • 95. LIBBY P.A. & WILLIAMS F.A. (1994) Fundamental aspects and a review. In: Turbulent Reacting Flows (Eds. Libby P.A. & Williams F.A.), Academic Press, New York, pp. 1-61.
  • 96. Lu D.M. & HETSRONI G. (1995) Direct numerical simulation of a turbulent open channel flow with passive heat transfer. Int. J. Heat Mass Transfer 38, 3241-3251.
  • 97. LUMLEY J.L. (1970) Stochastic tools in turbulence. Academic Press, New York & London.
  • 98. LUNDGREN T.S. (1967) Distribution functions in the statistical theory of turbulence. Phys. Fluids 10, 969-975.
  • 99. LUNDGREN T.S. (1969) Model equation for nonhomogeneous turbulence. Phys. Fluids 12, 485-497.
  • 100. LYONS S.L., HANRATTYT.J. & MCLAUGHLIN J.B. (1991) Direct numerical simulation of passive heat transfer in a turbulent channel flow. Int. J. Heat Mass Transfer 34, 1149-1161.
  • 101. MA B.K. & WARHAFT Z. (1986) Some aspects of the thermal mixing layer in grid turbulence. Phys. Fluids 29, 3114-3120.
  • 102. MACINNES J.M. & BRACCO F.V. (1992) Stochastic particle dispersion modeling and the tracer-particle limit. Phys. Fluids A 4, 2809-2824.
  • 103. MANCEAU R. & HANJALIĆ K. (2002) Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Phys. Fluids 14, 744-754.
  • 104. MARTIN J., DOPAZO C. & VALINO L. (1998) Dynamics of velocity gradient invariants in turbu¬lence: restricted Euler and linear diffusion models, Phys. Fluids 10, 2012-2025.
  • 105. MAXEY M.R. (1987) The motion of small spherical particles in a cellular flow field. Phys. Fluids 30, 1915-1928.
  • 106. MAXEY M.R. & RILEY J.J. (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883-889.
  • 107. MAZUMDER S. & MODEST M.F. (1997) A stochastic Lagrangian model for near-wall turbulent heat transfer. J. Heat Transfer 119, 46-52.
  • 108. MCCOMB W.D. (1990) The physics of fluid turbulence. Clarendon Press, Oxford.
  • 109. MENEVEAU C. (1991) Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469-518.
  • 110. MENEVEAU C. & KATZ J. (2000) Scale-invariance and turbulence models for large-eddy simula¬tion. Annu. Rev. Fluid Mech. 32, 1-32.
  • 111. MENEVEAU C, LUND T.S. & CABOT W.H. (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353-385.
  • 112. MINIER J.P. & POZORSKI J. (1995) Analysis of a PDF model in a mixing layer case. 10th Int. Symposium on Turbulent Shear Flows, 14-16 August, The Pennsylvania State University, University Park, USA.
  • 113. MINIER J.P. & POZORSKI J. (1997a) Derivation of a PDF model for turbulent flows based on principles from statistical physics. Phys. Fluids 9, 1748-1753.
  • 114. MINIER J.P. & POZORSKI J. (1997b) Propositions for a PDF model based on fluid particle acceleration. In: Turbulence, Heat and Mass Transfer 2 (Eds. Hanjalic K. & Peeters T.W.J.), Delft University Press, pp. 771-778.
  • 115. MINIER LP. & POZORSKI J. (1997c) Relations between the Kinetic Equation model and the Langevin Equation model in two-phase flow modelling. ASME Fluid Engineering Division Summer Meeting, 7th Int. Symposium on Gas Particle Flows, Vancouver, Canada, 22-26 June 1997, ASME FEDSM 97-3616.
  • 116. MINIER LP. & POZORSKI J. (1999) Wall boundary conditions in PDF methods and application to a turbulent channel flow. Phys. Fluids 11, 2632-2644.
  • 117. MOIN P. & KIM J. (1997) Tackling turbulence with supercomputers. Scientific American, January 1997.
  • 118. MOIN P. & MAHESH K. (1998) Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539-578.
  • 119. MONAGHAN J.L (1992) Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543-574.
  • 120. MONIN A.S. & YAGLOM A.M. (1975) Statistical Fluid Mechanics. MIT Press, Cambridge, Mass.
  • 121. MORRIS LP., FOX P.J. & ZHU Y. (1997) Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214-226.
  • 122. MOSER R.D., KIM J. & MANSOUR N.N. (1999) Direct numerical simulation of turbulent channel flow up to Rer = 590. Phys. Fluids 11, 943-945.
  • 123. MOSYAK A., POGREBNYAK E. & HETSRONI G. (2001) Effect of constant heat flux boundary condition on wall temperature fluctuation. J. Heat Transfer 123, 213-218.
  • 124. MURADOGLU M., JENNY P., POPE S.B. & CAUGHEY D. (1999) A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154, 342-371.
  • 125. A Y., PAPAVASSILIOU D. V. & HANRATTY T.J. (1999) Use of direct numerical simulation to study the effect of Prandtl number on temperature fields. Int. J. Heat Fluid Flow 20, 187-195.
  • 126. NAGANO Y. (2002) Modelling heat transfer in near-wall flows. In: Closure strategies for turbulent and transitional flows (Eds. B.E. Launder & N.D. Sandham), Cambridge University Press, pp. 188-247.
  • 127. NAGANO Y. & TAGAWA M. (1988) Statistical characteristics of wall turbulence with a passive scalar. J. Fluid Mech. 196, 157-185.
  • 128. OBERLACK M. (1997) Non-isotropic dissipation in non-homogeneous turbulence. J. Fluid Mech. 350,351-374.
  • 129. OGAMI Y. (2001) Simulation of heat-fluid motion by the vortex method. JSME Int. J. B - Fluid 44, 513-519.
  • 130. ORAN E.S., OH CK. & CYBYK B.Z. (1998) Direct Simulation Monte Carlo: recent advances and applications. Annu. Rev. Fluid Mech. 30,403-441.
  • 131. O'ROURKEP.L, BRACKBILL J.U. & LARROUTUROUB. (1993) On particle-grid interpolation and calculating chemistry in particle-in-cell methods. J. Comput. Phys. 109, 37-52.
  • 132. ÖTTINGER H.C. (1996) Stochastic processes in polymeric fluids. Springer.
  • 133. PAPOULIS A. (1991) Probability, Random Variables and Stochastic Processes, 3rd ed. McGraw-Hill, New York.
  • 134. PARNEIX S., LAURENCE D. & DURBIN P.A. (1998) A procedure for using DNS databases. J. Fluids Engng. 120, 40-47.
  • 135. PATEL R.P. (1973) An Experimental Study of a Plane Mixing Layer. AIAA J. 11, 67-71.
  • 136. PETERS N. (2000) Turbulent combustion. Cambridge University Press.
  • 137. PFALZNER S. & GIBBON P. (1996) Many-body tree methods in physics. Cambridge University Press.
  • 138. PIOMELLI J. (1997) Large eddy and direct simulations of turbulent flows. In: Introduction to the modelling of turbulence (lecture notes). Von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgia.
  • 139. PlOMELLl U. & BALARAS E. (2002) Wall-layer models for Large-Eddy Simulations. Annu. Rev. Fluid Mech. 34, 349-374.
  • 140. PLESSET M.S. & PROSPERETTI A. (1977) Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9,145-185.
  • 141. POLYAKOV A.F. (1974) Wall effect on temperature fluctuations in the viscous sublayer. Teplofizika Vysokikh Temperatur 12, 328-337 (in Russian).
  • 142. POPE S.B. (1976) The probability approach to the modelling of turbulent reacting flows. Combust. Flame 21, 299-312.
  • 143. POPE S.B. (1981) Transport equation for the joint probability density function of velocity and scalars in turbulent flow. Phys. Fluids 24, 588-596.
  • 144. POPE S.B. (1983) A Lagrangian two-time probability density function equation in inhomogeneous turbulent flows. Phys. Fluids 26, 3448-3450.
  • 145. POPE S.B. (1985) PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119-192.
  • 146. POPE S.B. (1990) Computations of turbulent combustion: Progress and challenges. 23rd Symposium on Combustion, The Combustion Institute, Pittsburgh, 591-612.
  • 147. POPE S.B. (1991a) Application of the velocity-dissipation probability density function model to inhomogeneous turbulent flows. Phys. Fluids A 3, 1947-1957.
  • 148. POPE S.B. (1991b) Mapping closures for turbulent mixing and reaction. Theoret. Comput. Fluid Dynamics 2, 255-270.
  • 149. POPE S.B. (1994a) Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26,23-63.
  • 150. POPE S.B. (1994b) On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6, 973-985.
  • 151. POPE S.B. (1995) Particle Method for Turbulent Flows: Integration of Stochastic Model Equations. J. Comput. Phys. 117, 332-349.
  • 152. POPE S.B. (2000) Turbulent Flows. Cambridge University Press.
  • 153. POPE S.B. (2002a) Stochastic Lagrangian models of velocity in homogeneous turbulent shear flow. Phys. Fluids 14, 973-985.
  • 154. POPE S.B. (2002b) A stochastic Lagrangian model for acceleration in turbulent flows. Phys. Fluids 14, 2360-2375.
  • 155. POPE S.B. & CHEN Y.L. (1990) The velocity-dissipation probability density function model for turbulent flows. Phys. Fluids A 2, 1437-1449.
  • 156. POTTER D. (1973) Computational Physics. Wiley. [Polish translation: (1982) Metody obliczeniowe fizyki PWN, Warszawa.]
  • 157. POZORSKI J. (1992) Coagulation in wet steam flow through a turbine stage. Arch. Mech. Eng. 39, 153-167.
  • 158. POZORSKI J. (1995) Numerical simulation of dispersed phase motion in turbulent two-phase flow. Doctoral thesis. Institute of Fluid-Flow Machinery, Gdańsk.
  • 159. POZORSKI J. (1997) Computation of particle dispersion in the Karman vortex street. Conference "Modelling and Design in Fluid-Flow Machinery", 18-21 November, Gdańsk. Proceedings, pp. 147-152.
  • 160. POZORSKI J. (1998a) A derivation of the kinetic equation for dispersed particles in turbulent flows. J. Appl. Theor. Mech. 36, 3L46.
  • 161. POZORSKI J. (1998b) Modelling of the bubble behaviour and cavitation inception in turbulent flow. ASME Fluids Engineering Division Summer Meeting, Symposium on Numerical Methods for Multi-phase Flows, Washington, USA, 21-25 June. Proceedings on CD-ROM, FEDSM98-5031.
  • 162. POZORSKI J. (1999) Computation of plane turbulent flow using probability density function method. J. Appl. Theor. Mech. 37, 3-11.
  • 163. POZORSKI L, APTE S.V. & RAMAN V. (2004) Filtered particle tracking for dispersed two-phase turbulent flows. In: Proceedings of the Summer Program, Center for Turbulence Research, Stanford University (to appear).
  • 164. POZORSKI J. & MINIER LP. (1998a) On the Lagrangian turbulent dispersion models based on the Langevin equation. Int. J. Multiphase Flow 24, 913-945.
  • 165. POZORSKI J. & MINIER LP. (1998b) Description of dispersed two-phase turbulent flow in the Lagrangian approach. Turbulence 4, 7-32.
  • 166. POZORSKI J. & MINIER LP. (1999a) PDF modeling of dispersed two-phase turbulent flows. Phys. Rev. E 59, 855-863.
  • 167. POZORSKI J. & MINIER J.P. (1999b) Modeling scalar mixing process in turbulent flow. 1st Int. Symp. "Turbulence and Shear Flow Phenomena", Santa Barbara, California, USA, 12-15 September. Proceedings, 1357-1362.
  • 168. POZORSKI J., MINIER LP. & BUKASA T. (2001) Development of stochastic models for simulation of reactive and two-phase turbulent flows. Report for Electricite de France, DER/MFTT, Chatou. IMP PAN arch. No. 1312/2001.
  • 169. POZORSKI J., MINIER J.P. & SIMONIN O. (1993) Analysis and new propositions for the crossing-trajectory effect in Lagrangian turbulent dispersion models. In Gas-Solid Flows, ASME FED 166, 63-71.
  • 170. POZORSKI L, SAZHIN S., WACŁAWCZYK M., CRUA C, KENNAIRD D. & HEIKAL M. (2002) Spray penetration in a turbulent flow. Flow, Turbul. Combust. 68, 153-165.
  • 171. POZORSKI L, WACŁAWCZYK M. & MINIER LP. (2003a) Full velocity-scalar probability density function computation of heated channel flow with wall function approach. Phys. Fluids 15, 1220-1232.
  • 172. POZORSKI L, WACŁAWCZYK M. & MINIER LP. (2003b) Probability density function computation of heated turbulent channel flow with the bounded Langevin model. J Turbul. 4, art. No. 011, 1-23.
  • 173. POZORSKI L, WACŁAWCZYK M. & MINIER LP. (2003c) Near-wall PDF modelling of turbulent heat transfer. In: Turbulence, Heat and Mass Transfer 4 (Eds. K. Hanjalić, Y. Nagano & M.J. Tummers), Begell House, New York, pp. 157-164.
  • 174. POZORSKI J. & WAWRENCZUK A. (2002) SPH computation of incompressible viscous flows. J Theor. Appl. Mech. 40, 917-937.
  • 175. PROSPERETTI A. (1991) The thermal behaviour of oscillating gas bubbles. J Fluid Mech. 222, 587-616.
  • 176. PROTAS B., SCHNEIDER K. & FARGE M. (2000) Alignment properties in Fourier and wavelet filtered forced two-dimensional turbulence. In: Advances in Turbulence VIII (Ed. C. Dopazo), CIMNE, Barcelona, pp. 793-796.
  • 177. PUMIR A. (1994) A numerical study of pressure fluctuations in three-dimensional, incompressible, homogeneous, isotropic turbulence. Phys. Fluids 6, 2071-2083.
  • 178. PUZYREWSKI R. & JANKOWSKI T. (1970) Conservation equations for a two-phase medium. Prace IMP 50, 49-65 (in Polish).
  • 179. REEKS M.W. (1991) On a kinetic equation for the transport of particles in turbulent flows, Phys. Fluids A 3,446-456.
  • 180. REEKS M.W. (1992) On the continuum equations for dispersed particles in nonuniform flows. Phys. Fluids A 4, 1290-1303.
  • 181. REYNOLDS O. (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. A 186, 123-164.
  • 182. REYNOLDS W.C. (1990) The Potential and Limitations of Direct and Large Eddy Simulations. In: Whither Turbulence? Turbulence at the Crossroads (Ed. J.L. Lumley), Springer.
  • 183. REYNOLDS W.C. & KASSINOS S.C. (1995) One-point modelling of rapidly deformed homogeneous turbulence. Proc. R. Soc. Lond. A 451, 87-104.
  • 184. RiSKEN H. (1989) The Fokker-Planck equation. Methods of solution and applications. Springer.
  • 185. ROBINSON S.K. (1991) Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601-639.
  • 186. ROGALLO R.S. & MOIN P. (1984) Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16, 99-137.
  • 187. ROOD, E.P. (1991) Review - Mechanisms of Cavitation Inception. J. Fluids Engng 113, 163-175.
  • 188. ROTHMAN D.H & ZALESKI S. (2000) Lattice-Gas Cellular Automata. Cambridge University Press.
  • 189. SANDHAM N.D. (2002) Introduction to Direct Numerical Simulation. In: Closure strategies for turbulent and transitional flows (Eds. B.E. Launder & N.D. Sandham), Cambridge University Press, pp. 248-266.
  • 190. SAWFORD B.L. (1991) Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 3, 1577-1586.
  • 191. SAWFORD B.L. (2001) Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289-317.
  • 192. SAZHIN S.S., FENG G. & HEIKAL, M.R. (2001) A model for spray penetration. Fuel 80, 2171-2180.
  • 193. SCHUSS Z. (1989) Teoria i zastosowania stochastycznych równań różniczkowych. PWN, Warszawa.
  • 194. SCHUSTER H.G. (1988) Deterministic chaos. An introduction. VCH Verlagsgesellschaft, Weinheim. [Polish translation: (1993) Chaos deterministyczny. Wprowadzenie. PWN, Warszawa.]
  • 195. SlMONiN O. (1996) Continuum modeling of dispersed two-phase flows. In: Combustion and Turbulence in Two-Phase Flows, 1995-1996 Lecture Series Programme, Von Karman Institute.
  • 196. SOBCZYK K. (1991) Stochastic differential equations. Kluwer Academic Publishers. [Polish translation: (1996) Stochastyczne równania różniczkowe. WNT, Warszawa.]
  • 197. SOBCZYK K. & SPENCER B.F. (1992) Random fatigue: from data to theory. Academic Press. [Polish translation: (1996) Stochastyczne modele zmęczenia materiałów. WNT, Warszawa.]
  • 198. SOCHA L. (1993) Moment equations in stochastic dynamie systems (in Polish). PWN, Warszawa.
  • 199. SOMMER T.P., SO R.M.C. & ZHANG H.S. (1994) Heat transfer modeling and the assumption of zero wall temperature fluctuations. J. Heat Transfer 116, 855-863.
  • 200. SPEZIALE C.G. (1991) Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107-157.
  • 201. SPEZIALE C.G. (1996) Modeling of turbulent transport equations. In: Simulation and modeling of turbulent flows (Eds. T.B. Gatski, M.Y. Hussaini & J.L. Lumley), Oxford University Press.
  • 202. SQUIRES K.D. & EATON J.K. (1991) Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169-1178.
  • 203. SREENIVASAN K.R. (1991) Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23, 539-600.
  • 204. STEINKAMP M.J., CLARK T.T. & HARLOW F.H. (1999) Two-point description of two-fluid turbulent mixing—I. Model formulation. Int. J. Multiphase Flow 25, 599-637.
  • 205. STOCK D.E. (1996) Particle dispersion in flowing gases. J. Fluids Engng. 118, 4-17.
  • 206. STYCZEK A., DUSZYŃSKI P., POĆWIERZ M. & SZUMBARSKI J. (2004) Random vortex method for three dimensional flows. Part I: mathematical background. J. Theor. Appl. Mech. 42, 3-20.
  • 207. TALAY D. (1995) Simulation of stochastic differential systems. In: Probabilistic methods in applied physics (Eds. P. Kree & W. Wedig), Springer.
  • 208. TAYLOR G.I. (1921) Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196-211. [Also in: (1961) Turbulence - classic papers on statistical theory (Eds. S.K. Friedlander & L. Topper). Interscience Publ., New York.]
  • 209. TENNEKES H. & LUMLEY J.L. (1972) A First Course in Turbulence. MIT Press.
  • 210. THOMSON D.J. (1986) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529-556.
  • 211. TISELJ I., POGREBNYAKE., LI C, MOSYAK A. & HETSRONI G. (2001a) Effect of wall boundary condition on scalar transfer in a fully developed turbulent flume. Phys. Fluids 13, 1028-1039.
  • 212. TISELJ I., BERGANT R., MAVKO B., BAJSIĆ I. & HETSRONI G. (2001b) DNS of turbulent heat transfer in channel flow with heat conduction in the solid wall. J. Heat Transfer 123, 849-857.
  • 213. TOLPADI A.K., HU I.Z., CORREA S.M. & BURRUS D.L. (1997) Coupled Lagrangian Monte Carlo PDF-CFD computation of gas turbine combustor flowfields with finite-rate chemistry. J. Eng. Gas Turb. Power 119, 519-526.
  • 214. TOWNSEND A.A. (1976) The Structure of Turbulent Shear Flow. Cambridge University Press.
  • 215. VALINO L. & DOPAZO C. (1990) A binomial sampling model for scalar turbulent mixing. Phys. Fluids A 2, 1204-1212.
  • 216. VALINO L. & DOPAZO C. (1991) A binomial Langevin model for turbulent mixing. Phys. Fluids A 3,3034-3037.
  • 217. VAN KAMPEN N.G. (1992) Stochastic processes in physics and chemistry. 2nd ed. North-Holland, Amsterdam.
  • 218. VAN SLOOTEN P.R., JAYESH & POPE S.B. (1998) Advances in PDF modeling for inhomogeneous turbulent flows. Phys. Fluids 10, 246-265.
  • 219. VAN SLOOTEN P.R. & POPE S.B. (1997) PDF modeling for inhomogeneous turbulence with exact representation of rapid distortions. Phys. Fluids 9, 1085-1105.
  • 220. VlLLERMAUX J. & FALK L. (1996) Recent advances in modelling micromixing and chemical reaction. Revue de I'Institut Francois du Petrole 51, 205-213.
  • 221. WACŁAWCZYK M. & POZORSKI J. (2002a) Wavelet analysis of near-wall region in turbulent channel flow. Turbulence 8-9, 113-130.
  • 222. WACŁAWCZYK M. & POZORSKI J. (2002b) Two-point velocity statistics and the POD analysis of near-wall region in a turbulent channel flow. J. Theor. Appl. Mech. 40, 895-916.
  • 223. WACŁAWCZYK M. & POZORSKI J. (2004) Conjugate heat transfer modelling using the FDF approach for near-wall scalar transport coupled with the POD method for flow dynamics. In: Advances in Turbulence X (Eds. H.I. Andersson & P.A. Krogstadt), CIMNE, Barcelona.
  • 224. WACŁAWCZYK M., POZORSKI J. & MINIER J.P. (2004) PDF computation of turbulent flows with a new near-wall model. Phys. Fluids 16, 1410-1422. '
  • 225. WANG L.P. & MAXEY M.R. (1993) Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27-68.
  • 226. WARHAFT S.B. (1984) The interference of thermal fields from line sources in grid turbulence. J. Fluid Mech., 144, 363-387.
  • 227. WARHAFT Z. (2000) Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203-240.
  • 228. WARNATZ J., MAAS U. & DIBBLE R.W. (1999) Combustion. Springer.
  • 229. WAWREŃCZUK A. (2004) Modelling and computation of the flows with interface using Smooth Particle Hydrodynamics (SPH). Doctoral Thesis. Institute of Fluid-Flow Machinery, Gdańsk.
  • 230. WELTON W.C. (1998) Two-dimensional PDF/SPH simulations of compressible turbulent flows. J. Comput. Phys. 139, 410-443.
  • 231. WELTON W.C. & POPE S.B. (1997) PDF model calculations of compressible turbulent flows using Smoothed Particle Hydrodynamics. J. Comput. Phys. 134, 150-168.
  • 232. WILCZYŃSKI, L. (1995) A prediction of cavitation bubble behaviour in random varying pressure field. Proceedings, International Symposium on Cavitation, 2-5 May 1995, Deauville, France.
  • 233. WOUTERS H.A., PEETERS T.W.J. & ROEKAERTS D. (1996) On the existence of a stochastic Lagrangian model representation for second-moment closures. Phys. Fluids A 8, 1702-1704.
  • 234. WOUTERS H.A., PEETERS T.W.J. & ROEKAERTS D. (2002) Joint velocity-scalar PDF methods. In: Closure strategies for turbulent and transitional flows (Eds. B.E. Launder & N.D. Sandham), Cambridge University Press.
  • 235. WYGNANSKI I. & FIEDLER H.E. (1970) The two-dimensional mixing region. J. Fluid Mech. 41, 327-361.
  • 236. XU J. & POPE S.B. (1999) Numerical studies of PDF/Monte Carlo methods for turbulent reactive flows. J. Comput. Phys. 152, 192-230.
  • 237. YEUNG P.K. (2002) Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115-142.
  • 238. YEUNG P.K. & POPE S.B. (1989) Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531-586.
  • 239. YOON K. & WARHAFT Z. (1990) The evolution of grid-generated turbulence under conditions of stable thermal stratification. J. Fluid Mech. 215, 601-638.
  • 240. ZIELIŃSKI R. (1970) Metody Monte Carlo. WNT, Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0006-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.