PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza pracy dyfuzorów termicznych w aspekcie chłodzenia turbin gazowych

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Słowa kluczowe
Twórcy
autor
Bibliografia
  • [1] M.E. Dejcz, A.E. Zariankin. Gidrogazodinamika. Energoatomizdat, Moskwa, 1984.
  • [2] A.E. Zariankin, L.A. Ignatievskaja, K.J. Jesionek, M.M. Wiewiórkowska. Właściwości fizyczne ruchu płynu w dyfuzorach termicznych. Materiały X Krajowej Konferencji Mechaniki Płynów, strony 247-252, Gdańsk-Sarnówek, 1992. IMP PAN i Politechnika Gdańska.
  • [3] J. Dowkontt. Teoria Silników Cieplnych. Państwowe Wydawnictwo Naukowe, Warszawa, 1962.
  • [4] W.R. Gundlach. Maszyny przepływowe cz.II. Państwowe Wydawnictwo Naukowe, Warszawa, 1971.
  • [5] O. Reynolds. On the extent and action of the heating surface for steam boilers. Proc. Literary Philosophical Soc. Manchester, 14:7-13, 1875.
  • [6] T.E. Stanton. On the passage of heat between metal surfaces and liquids in contact with them. Philosophical Transactions of Royal Society of London, A190:67-88, 1898.
  • [7] L. Prandtl. Eine beziehung zwischen warmeaustausch und stromungswiderstand der flussigkeiten. Physikalische Zeitschrift, 11:1072-1078, 1910.
  • [8] C.G Speziale, R.M.C So. The Handbook of Fluid Dynamics, rozdzia/1 Turbulence Modelling and Simulation, strony 695-714. CRC Press, Springer, 1998.
  • [9] W.M. Kays. Turbulent Prandtl number - Where are we? ASME Journal of Heat Transfer, 116:284-295, 1994.
  • [10] B. Weigand, J. Von Wolfersdorf, S.O. Neumann. Internal cooling for industrial gas turbines: Present state and novel approaches. Proceedings of 5th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, strony 67-78, Gdańsk, September 2001. Edited by P. Doerffer.
  • [11] A.J. Reynolds. The prediction of turbulent Prandtl and Schmidt numbers. International Journal of Heat and Mass Transfer, 18:1055-1068, 1975.
  • [12] A.J. Reynolds. The variation of turbulent Prandtl and Schmidt numbers in wakes and jets. International Journal of Heat and Mass Transfer, 19:757-764, 1976.
  • [13] M. Jischa, H.B. Rieke. About the prediction of turbulent Prandtl and Schmidt numbers from modeled transport equations. International Journal of Heat and Mass Transfer, 22:1547-1555, 1978.
  • [14] D.M. McEligot, RE. Picket, M.F. Taylor. Measurement of wall region turbulent Prandtl numbers in small tubes. International Journal of Heat and Mass Transfer, 19:799-803, 1976.
  • [15] K. Bremhorst, L. Krebs. Experimentally determined turbulent Prandtl numbers in liquid sodium at low Reynolds numbers. International Journal of Heat and Mass Transfer, 35(2):351-359, 1992.
  • [16] R.A. Antonia, J. Kim. Turbulent Prandtl number in the near-wall region of a turbulent channel flow. International Journal of Heat and Mass Transfer, 34:1905-1908, 1991.
  • [17] R.A. Antonia, L.W.B. Browne. Conventional and conditional Prandtl number in a turbulent plane wake. International Journal of Heat and Mass Transfer, 30:2023-2030, 1987.
  • [18] R.A. Antonia. Behaviour of the turbulent Prandtl number near the wall. International Journal of Heat and Mass Transfer, 23:906-908, 1980.
  • [19] B. Weigand, J.R. Ferguson, M.E. Crawford. An extended Kays and Crawford turbulent Prandtl number model. International Journal of Heat and Mass Transfer, 40:4191-4196, 1997.
  • [20] D. Mikielewicz, E. Ichnatowicz. Turbulence modelling using various turbulent Prandtl number models. The Transactions of the Institute of Fluid-Flow Machinery, 100:141-154, 1996.
  • [21] K. Rup, M. Soczówka. Turbulentny przepływ wody ze zmienną liczbą Prt. Czasopismo Techniczne Politechniki Krakowskiej, 2M:45-61, 2000.
  • [22] K. Rup, M. Soczówka. An improved low Reynolds number k — ε model for heat transfer calculations. Forschung im Ingenieurwessen, 65:225-235, 2000.
  • [23] K. Rup, P. Wais. An application of the k — ε model with variable Prandtl number to heat transfer computations in air flows. Heat and Mass Transfer, 34:503-508, 1999.
  • [24] K. Rup, L. Danys. Wpływ zaburzenia w przekroju wlotowym rury na kształtowanie się obszaru przejścia laminarno-turbulentnego w nieizotermicznym przepływie schłodzonej cieczy. Materiały XIII Krajowej Konferencji Mechaniki Płynów, strony 123-128, 2001.
  • [25] M. Hishida, Y. Nagano. Structure of turbulent velocity and temperature fluctuations in fully developed pipe flow. ASME Journal of Heat Transfer, 101:15-22, 1979.
  • [26] Y. Nagano, M. Tagawa. Statistical characteristics of wall turbulence with passive scalar. Journal of Fluid Mechanics, 196:157-185, 1988.
  • [27] I.N.G. Wardana, T. Ueda, M. Mizomoto. Structure of turbulent two-dimensional channel flow with strongly heated wall. Experiments in Fluids, 13:17-25, 1992.
  • [28] I.N.G. Wardana, T. Ueda, M. Mizomoto. Effect of strong wall heating on turbulence statistics of a channel flow. Experiments in Fluids, 18:87-94, 1994.
  • [29] I.N.G. Wardana, T. Ueda, M. Mizomoto. Velocity-temperature correlation in strongly heated channel flow. Experiments in Fluids, 18:454-461, 1995.
  • [30] T. Ota, N. Kon. Heat transfer in the separated and reattached flow on a blunt flat plate. ASME Journal of Heat Transfer, 78:459-462, 1974.
  • [31] T. Ota, N. Kon. Turbulent transfer of momentum and heat in a separated and reattached flow over a blunt flat plate. ASME Journal of Heat Transfer, 102:459-462, 1980.
  • [32] H. Maekawa, Y. Kawada, M. Kobayashi, H. Yamaguchi. An experimental study on the spanwise eddy diffusivity of heat in a flat plate turbulent boundary layer. International Journal of Heat and Mass Transfer, 34(8):1991-1998, 1991.
  • [33] R.A. Antonia, H.Q. Danh, A. Prabhu. Response of a turbulent boundary layer to a step change in surface heat flux. Journal of Fluid Mechanics, 80:153-157, 1977.
  • [34] T. Tsuji, Y. Nagano. Natural convective vertical boundary layer flow. ASME Journal of Heat Transfer, 101:15-22, 1989.
  • [35] N. Kasagi, Y. Tomita, A. Kuroda. Direct numerical simulation of passive scalar field in a turbulent channel flow. ASME Journal of Heat Transfer, strony 598-606, 1992.
  • [36] N. Kasagi, O. Iida. Progress in direct numerical simulation of turbulent heat transfer. Proceedings of the 5*/i ASME/JSME Joint Thermal Engineering Conference, March 1999.
  • [37] T.P. Sommer, R.M.C. So, H.S. Zhang. Heat transfer modeling and the assumption of zero wall temperature fluctuations. ASME Journal of Heat Transfer, 116:855-863, 1994.
  • [38] T.P. Sommer, R.M.C. So, Y.G. Lai. A near-wall two-equation model for turbulent heat fluxes. International Journal of Heat and Mass Transfer, 35(12):3375-3387, 1994.
  • [39] R.M.C. So, T.P. Sommer. A near-wall eddy conductivity model for fluids with different Prandtl numbers. ASME Journal of Heat Transfer, 116:844-854, 1994.
  • [40] T.P. Sommer, R.M.C. So, J. Zhang. Modeling nonequilibrium and history effects of homogeneous turbulence in a stably stratified medium. International Journal of Heat and Fluid Flow, 18:29-37, 1997.
  • [41] Y. Nagano, M. Shimada. Computational Fluid Dynamics Review, rozdzia/1 Computational Modeling and Simulation of Turbulent Flows, strony 695-714. John Willey & Sons, 1995.
  • [42] Y. Nagano, C. Kim. A two-equation model for heat transport in wall turbulent shear flows. ASME Journal of Heat Transfer, 110:583-589, 1988.
  • [43] Y. Nagano, M. Shimada. Development of a two-equation heat transfer model based on direct simulations of turbulent flows with different Prandtl numbers. ASME Journal of Heat Transfer, 110:583-589, 1988.
  • [44] K. Abe, T. Kondoh, Y. Nagano. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows - Part 2 thermal field calculations. International Journal of Heat and Mass Transfer, 38:1467-1481, 1995.
  • [45] M.S. Youssef, Y. Nagano, M. Tagawa. A two-equation heat transfer model for predicting turbulent thermal fields under arbitrary wall thermal conditions. International Journal of Heat and Mass Transfer, 35:3095-3104,1992.
  • [46] G.H. Rhee, H.J. Sung. Alow-reynolds-number, four-equation heat transfer model for turbulent separated and reataching flows. International Journal of Heat and Mass Transfer, 18:38-44, 1997.
  • [47] G.H. Rhee, H.J. Sung. A nonlinear low-Reynolds-number heat transfer model for turbulent separated and reataching flows. International Journal of Heat and Mass Transfer, 43:1439-1448, 2000.
  • [48] M.K. Chung, H.J. Sung. Four-equation turbulence model for prediction of the turbulent boundary layer affected by buoyancy force over a fiat plate. International Journal of Heat and Mass Transfer, 27:2387-2395, 1984.
  • [49] B. Deng, W. Wu, S. Xi. A near-wall two-equation heat transfer model for wall turbulent flows. International Journal of Heat and Mass Transfer, 44:691-698, 2000.
  • [50] K. Hanjalić. Introduction to the modelling of turbulence. Second-Moment („Reynolds-Stress") Turbulence Closures. Lecture Series 2000-04. von Karman Institute for Fluid Dynamics, March 2000.
  • [51] Y. Nagano. Modelling heat transfer in near-wall flows. Proceedings of Conference on Closure Strategies for Modelling Turbulent and Transitional Flows, strony 1-52, Cambridge. April 1999. Isaac Newton Institute for Mathematical Science.
  • [52] B.E. Launder. On the computation of convective heat transfer in complex turbulent flows. ASME Journal of Heat Transfer, 110:1112-1128, 1988.
  • [53] J. Pozorski. Modelowanie fluktuacji termicznych w przepływie turbulentnym. Materiały XV Krajowej Konferencji Mechaniki Płynów, Augustów, Wrzesień 2002.
  • [54] A.E. Zariankin, B.P. Simonov. Wychlopnyje patrubki parowych i gazowych turbin. Izdatelstwo MEI, Moskwa, 2002.
  • [55] K.J. Jesionek. Prognozowanie oderwania strumienia i możliwości jego ograniczenia w przepływowych maszynach energetycznych. Prace Naukowe Instytutu Techniki Cieplnej : Mechaniki Płynów Politechniki Wrocławskiej, (51), 1998.
  • [56] K.J. Jesionek, M.M. Wiewiórkowska. Badania wstępne przepływu w dyfuzorze termicznym. Materiały XVII Zjazdu Termodynamików, strony 543-552, Kraków, 1999. Politechnika Krakowska.
  • [57] T. Chmielniak, A. Rusin, K. Czwiertnia. Turbiny gazowe. Maszyny Przepływowe, Tom 25. Zakład Narodowy im. Ossolińskich, Wydawnictwo Polskiej Akademii Nauk, 2001.
  • [58] B. Lakshminarayana. Fłuid Dynamics and Heat Transfer of Turbomachinery. John Wiley & Sons Inc., New York, 1996.
  • [59] http://www.ercoftac.org.
  • [60] http://www.jsme.or.jp/ted/htdb/dathet.html.
  • [61] http://www.thtlab.t.u-tokyo.ac.jp/dns/dns-database.html.
  • [62] M. Karcz. Analiza pracy dyfuzorów termicznych w aspekcie chłodzenia turbin gazowych. Praca doktorska, Instytut Maszyn Przepływowych PAN, Zakład Przepływów z Reakcjami Chemicznymi, Gdańsk, 2003.
  • [63] J. Badur, M. Banaszkiewicz, M. Karcz, M. Winowiecki. Numerical simulation of 3D flow through a control valves. International Conference SYMKOM'99, Turbomachmery No. 15, strony 29-36, Łódź, November 1999.
  • [64] M. Bielecki, M. Karcz, W. Radulski, J. Badur. Thermo-mechanical coupling between the flow of steam and deformation of the valve during start-up of the 200 MW turbine. TASK Quarterly, 5(2): 125-140, 2001.
  • [65] A. Gardzilewicz, M. Karcz, S. Marcinkowski, J. Badur, M. Bielecki, A. Malec, M. Banaszkiewicz. Proposal of modernisation of a steam turbine stage before extraction, CFD and CSD analysis. TASK Quarterly, 6(4):577-589, 2002.
  • [66] A. Gardzilewicz, M. Karcz, S. Marcinkowski, J. Badur, R. Karpiuk, C. Szyrejko, D. Ob-rzut. Modernizacje króćca wylotowego turbin parowych 360 MW. Materiały V Konferencji Naukowo-Technicznej, Elektrownie cieplne, Eksploatacja-Modernizacje-Remonty, strony 65-75, Słok-Bełchatów, Wrzesień 2001.
  • [67] M. Karcz, J. Badur. An alternative heat flux modelling for gas turbine cooling application. Transaction of IFFM PAS-ci, 113:201-212, 2003.
  • [68] M. Karcz, J. Badur. A turbulent heat flux two-equation 0'2-ε0 closure based on the V2F turbulence model. TASK Quarterly, 7(3):371-383, 2003.
  • [69] J. Badur, T. Ochrymiuk. Numeryczne modelowanie turbulentnego spalania gazów z uwzględnieniem zredukowanej i pełnej kinetyki reakcji chemicznych. Zeszyty Naukowe IMP PAN, (491/1456), 1998.
  • [70] J. Badur, D.J. Jackson. Uwagi o Sub-mechanice wszechświata Osborne'a Reynoldsa. The Transactions of the Institute of Fluid-Flow Machinery, 99:127-150, 1995.
  • [71] T. Chmielniak. Przepływy transoniczne. Równania zachowania. Materiały wykładowe IX Szkoły Letniej Mechaniki Płynów, strony 3-41, Nowa Kaletka, 1996. Sekcja Mechaniki Płynów Komitetu Mechaniki PAN, Wydział Mechaniczny Akademii Rolniczo-Technicznej w Olsztynie.
  • [72] J. Mikielewicz. Modelowanie procesów cieplno-przepływowych. Maszyny Przepływowe, Tom 17. Zakład Narodowy im. Ossolińskich, Wydawnictwo Polskiej Akademii Nauk, 1995.
  • [73] J. Mikielewicz. Podstawy klasycznej termodynamiki procesów odwracalnych i nieodwracalnych. VII Letnia Szkoła Termodynamiki, Współczesne Kierunki w Termodynamice, strony 7-48, Gdańsk, September 1997. Wydawnictwo IMP PAN.
  • [74] J.Madejski. Teoria wymiany ciepła. Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1998.
  • [75] S. Ochęduszko. Termodynamika stosowana. Wydawnictwa Naukowo-Techniczne, Warszawa, 1967.
  • [76] S.S. Kutateladze. Fundamentals of Heat Transfer. Edward Arnold Ltd., 1963.
  • [77] J. Pozorski. Zagadnienia turbulencji w mechanice płynów. Zeszyty Naukowe IMP PAN, (515/1474), 2000.
  • [78] J. Badur, J. Marcinkiewicz. On modelling anisotropy in turbulence. Proceedings of Conference on Modelling and Design in Fluid-Flow Machinery, strony 17-26, Gdańsk, 1997. Wydawnictwo IMP PAN, Edited by J. Badur et al.
  • [79] S. Drobniak, A. Jarża. Review of turbulence modelling methods for single phase flows. Turbulence, 4:67-81, 1998.
  • [80] O. Reynolds. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London, A186:123-164, 1895.
  • [81] J. Badur, Z. Bilicki. Some problems of turbulence in two-phase flow. Turbulence, 4:33-54, 1998.
  • [82] L. Davidson. An introduction to turbulence modelling. Publication 97/2, Department of Thermo and Fluids Dynamics, Chalmers University of Technology, Goteborg, Sweden, January 2003.
  • [83] J.O. Hinze. Turbulence. McGraw-Hill Book Company, Inc., 1959.
  • [84] R. Puzerewski, J. Sawicki. Podstawy mechaniki płynów i hydrauliki. Państwowe Wydawnictwo Naukowe, Warszawa, 2000.
  • [85] J. Kaczyński. Seminarium pt. Modelowanie Turbulencji w Zastosowaniach Technicznych - przegląd ważniejszych modeli wykorzystywanych w programach obliczeniowych do rozwiązywania równań Reynoldsa. Zeszyty Naukowe IMP PAN, (486/1448):27-50, 1997.
  • [86] Fluent Inc., Lebanon, USA. FLUENT User's Guide, 1997-2002.
  • [87] B.E. Launder, D.B. Spalding. The numerical computations of turbulent flows. Computations Methods in Applied Mechanics Engineering, 3:269-289, 1974.
  • [88] J. Bredberg. Prediction of Flow and Heat Transfer Inside Turbine Blades Using EARSM. k-ε and k-ω Turbulence Models. Praca doktorska, Chalmers University of Technolog}'. Department of Thermo and Fluid Dynamics, Goteborg, 1999.
  • [89] A. Yakhot, I. Staroselsky, S.A. Orszag. Asymptotic behavior of solutions of the renormalization group k- ε turbulence model. AIAA Journal, 32(5):1087-1089, 1994.
  • [90] V.C. Patel, W. Rodi, G. Scheuerer. Turbulence models for near-wall and low Reynolds number flows: A review. AIAA Journal, 23(9): 1308-1319, 1985.
  • [91] D.C. Wilcox. Simulation of transition with a two-equation turbulence model. AIAA Journal, 32(2):247-255, 1994.
  • [92] F.R. Menter. Two-equation eddy-viscosity turbulence model for engineering application AIAA Journal, 32(8):1598-1605, 1994.
  • [93] J. Larsson. Numerical Simulation of Turbulent Flows for Turbine Blade Heat Transfer Applications. Praca doktorska, Chalmers University of Technology, Department of Then«» and Fluid Dynamics, Goteborg, 1998.
  • [94] P.A. Durbin. Application of a near-wall turbulence model to boundary layers and heat transfer. International Journal of Heat and Fluid Flow, 14:316-323, 1993.
  • [95] P.A. Durbin. Separated flow computations with the k-ε-v2 model. AIAA Journal. 33:659-664, 1995.
  • [96] M. Behnia, S. Parneix. Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate. International Journal of Heat and Mass Transfer, 41(12):1845-1855, 1998.
  • [97] P.A. Durbin. A Reynolds stress model for near-wall turbulence. Journal of Fluid Mechanics, 249:465-498, 1993.
  • [98] G. Iaccarino. Prediction of a turbulent separated flow using commercial CFD codes. ASME Journal of Fluid Engineering, 123:819-828, 2001.
  • [99] R.M. Jones. Advanced turbulence modeling for industrial applications. ME Graduate Student Conference, strony 24-25, 2002.
  • [100] G. Kalitzin. Application of the v2-f model to aerospace configurations. Annual Research Briefs of Center for Turbulence Research of Stanford University, 1999:289-300, 1999.
  • [101] G. Kalitzin. An implementation of the v2-f model with application to transonic flows. Annual Research Briefs of Center for Turbulence Research of Stanford University, 1998:171-184, 1998.
  • [102] A. Ooi, G. Iaccarino, M. Behnia. Heat transfer predictions in cavities. Annual Research Briefs of Center for Turbulence Research of Stanford University, 1998:185-196, 1998.
  • [103] R. Manceau, S. Parneix, D. Laurence. Turbulent heat transfer predictions using the v2-f model on unstructured grids. International Journal of Heat and Fluid Flow, 21:320-328, 2000.
  • [104] S. Parneix, P.A. Durbin, M. Behnia. Computation of 3-D turbulent boundary layers using the V2F model. Flow, Turbulence and Combustion, 60:16-46, 1998.
  • [105] B.A. Reif, P.A. Durbin, A. Ooi. Model rotational effects in eddy-viscosity closures. International Journal of Heat and Fluid Flow, 20:563-573, 1998.
  • [106] OP. Chen. Multiple-scale turbulence model in confined swirling jet predictions. AIAA Journal, 24(10):1717-1719, 1986.
  • [107] Y. Nagano, M. Kondoh, M. Shimada. Multiple time-scale turbulence model for wall and homogenous shear flows based on direct numerical simulations. International Journal of Heat and Fluid Flow, 18(4):346-359, 1997.
  • [108] R. Schiestel. Multiple-time-scale modeling of turbulent flows in one point closure. Physics of Fluids, 30(3):722-731, 1987.
  • [109] S.W. Kim. Calculation of divergent channel flows with a multiple-time-scale turbulence model. AIAA Journal, 29(4):547-554, 1991.
  • [110] S.W. Kim. Calculation of a circular jet in crossflow with a multiple-time-scale turbulence model. International Journal of Heat and Mass Transfer, 35(10):2357-2365, 1992.
  • [111] R. Rubinstein. Formulation of a two-scale model of turbulence. ICASE Report 2000-5, NASA/CR-2000-209853, February 2000.
  • [112] R.J. Simoneau, F.F. Simon. Heat transfer in the turbine gas path. International Journal of Heat and Fluid Flow, 14(2):104-128, 1993.
  • [113] G.H. Rhee, H.J. Sung. A nonlinear low-Reynolds-number k-ε model for turbulent separated and reataching flows - II. Thermal field computations. International Journal of Heat and Mass Transfer, 39:3465-3474,1996.
  • [114] M.M. Gibson. An algebraic stress and heat-flux model for turbulent shear flow with streamline curvature. International Journal of Heat and Mass Transfer, 21:1609-1617, 1978.
  • [115] H. Iacovides. Computation of flow and heat transfer through rotating ribbed passages. International Journal of Heat and Fluid Flow, 19:393-400, 1998.
  • [116] B.J. Daly, F.H. Harlow. Transport equation in turbulence. Physics of Fluids, 13(11):2634-2649, 1970.
  • [117] M.M. Gibson, B.E. Launder. On the calculation of horizontal, turbulent, free shear flows under gravitional influence. ASME Journal of Heat Transfer, 98:81-87, February 1976.
  • [118] R. Puzyrewski. Seminarium pt. Modelowanie Turbulencji w Zastosowaniach Technicznych - uwagi do dyskusji na temat modelowania turbulencji dla modeli obliczeniowych typu 3D. Zeszyty Naukowe IMP PAN, (486/1448):79-93, 1997.
  • [119] Y. Sumitani, N. Kasagi. Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA Journal, 33(7):1220-1228, 1995.
  • [120] H. Kawamura, K. Ohsaka, H. Abe, K. Yamamoto. DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. International Journal of Heat and Fluid Flow, 19:482-491, 1998.
  • [121] H. Kawamura, H. Abe, Y. Matsuo. DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. International Journal of Heat and Fluid Flow, 20:196-207, 1999.
  • [122] P. Bradshaw. Understanding and prediction of turbulent flow - 1996. International Journal of Heat and Fluid Flow, 18(l):45-54, 1996.
  • [123] R. Manceau, K. Hanjalić. Elliptic blending model: A new near-wall Reynolds-stress turbulence closure. Physics of Fluid, 14(2):744-754, 2002.
  • [124] R. Manceau. Reproducing the blocking effect of the wall in one-point turbulence models. Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000, strony 543-552, Barcelona, September 2000.
  • [125] G. Iaccarino. Complex flows and heat transfer calculations using an advanced turbulence model in FLUENT. 1999 FLUENT User's Group Meeting, 1999.
  • [126] M. Wolfshtein. The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient. International Journal of Heat and Mass Transfer, 12:301-318, 1969.
  • [127] K. Abe, T. Kondoh, Y. Nagano. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows - Part 1 flow field calculations. International Journal of Heat and Mass Transfer, 37:139-151, 1994.
  • [128] K.C. Chang, W.D. Hsieh, CS. Chen. A modified low-reynolds-number turbulence model applicable to recirculating flow in pipe expansion. ASME Journal of Fluids Engineering, 117:417-423, 1995.
  • [129] W.D. Hsieh, K.C. Chang. Calculation of wall heat transfer in pipe-expansion turbulent flows. International Journal of Heat and Mass Transfer, 39(18):3813-3822, 1996.
  • [130] W.D. Hsieh, K.C. Chang. Two-layer approach combining Reynolds stress and low-Reynolds-number k-e models. International Journal of Heat and Mass Transfer, 39(18):3813-3822, 1996.
  • [131] Z. Yang, T.H. Shih. New time scale based k - ε model for near-wall turbulence. AIAA Journal, 31(7):1191-1198, 1993.
  • [132] R. Manceau, M. Wang, D. Laurence. Inhomogenity and anisotropy effects on tge redistribution term. Journal of Fluid Mechanics, 438:307-338, 2001.
  • [133] M. Wacławczyk, J. Pozorski. Modelling of turbulent flow in the near-wall region using PDF method. Journal of Theoretical and Applied Mechanics, 41(1):3-17, 2003.
  • [134] B.E. Launder. Topics in Applied Physics - Turbulence, rozdzia/1 Heat and Mass Transport, strony 695-714. Springer-Verlag, 1976.
  • [135] J. Larsson. Two-equation turbulence models for turbine blade heat transfer simulations. Submitted to Aeronautics and Astronautics Paper, strony 1-9, 1997.
  • [136] M. Karcz. Numeryczna analiza i porównanie modeli algebraicznych turbulentnej wymiany ciepła na przykładzie przepływu w rurze. Opracowanie Wewnętrzne IMP PAN, (1549):1-10, 2001.
  • [137] M. Karcz. Numeryczna analiza i porównanie modeli algebraicznych turbulentnej wymiany ciepła na przykładzie nieustalonego przepływu w rurze. Opracowanie Wewnętrzne IMP PAN, (1590):l-7, 2001.
  • [138] S.E. Elgobashi, B.E. Launder. Turbulent time scales and the dissipation rate of temperature variance in the thermal mixing layer. Physics of Fluids, 26(9):2415-2419, 1983.
  • [139] W.P. Jones, P. Musonge. Closure of the Reynolds stress and scalar flux equations. Physics of Fluids, 31(12):3589-3604, 1988.
  • [140] M. Karcz. O modelowaniu wymiany ciepła w przepływie. Opracowanie Wewnętrzne IMP PAN, (1548):l-23, 2001.
  • [141] Y.G. Lai, R.M.C. So. A near-wall modeling of turbulent heat fluxes. International Journal of Heat and Mass Transfer, 33(7):1429-1440, 1990.
  • [142] H.S. Doi, K. Hanjalic, T.A.M. Versteegh. A DNS-based thermal second-moment closure for buoyant convection at vertical walls. Journal of Fluid Mechanics, 391:211-247, 1999.
  • [143] G. Iaccarino. Prediction of the turbulent flow in a diffuser with commercial CFD codes. Annual Research Briefs of Center for Turbulence Research of Stanford University, 2000:271-278, 2000.
  • [144] M. Karcz. Zastosowanie modelu turbulencji k-v'2-f dla przepływów dyfuzorowych z oderwaniem. Opracowanie Wewnętrzne IMP PAN, (2366):1-16, 2002.
  • [145] L. Casara, T. Arts. Aero-thermall performance investigation of an internal cooling channel with high blockage ratio. Proceedings of 5th Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, strony 401-411, Praha, 2003. Edited by M. Stastny et al.
  • [146] M. Karcz. Eksperymenty dotyczące turbulentnej wymiany ciepła oraz przepływów w dyfuzorze termicznym. Opracowanie Wewnętrzne IMP PAN, (1080):l-32, 2001.
  • [147] B. Gebhart. Heat Transfer. McGraw-Hill Book Company, Inc., New York, 1977.
  • [148] ERCOFTAC. Best Practice Guidelines, wydanie 1, 2000.
  • [149] http://netsrv.frccs.sut.ac.jp:8001/ kawaftp/dns/dns.html.
  • [150] T.M. Liou, J.J. Hwang, S.H. Chen. Simulation and measurements of enhanced heat transfer in a channel with periodic ribs on one principal wall. International Journal of Heat and Mass Transfer, 36:507-517, 1993.
  • [151] J. Bredberg. Prediction of flow and heat transfer in a stationary two-dimensional rib roughened passage using low-re turbulent models. Proceedings of 3rd European Conference on Turbomachinery. IMech C557/074/99, 1999.
  • [152] T. Chmielniak, A. Rusin, W. Wróblewski, H. Łukowicz, G.Nowak. Chłodzenie układów łopatkowych turbin gazowych. I Sympozjum Wymiany Masy i Ciepła, strony 79-86, 2001.
  • [153] T. Chmielniak, A. Rusin, W. Wróblewski, G. Nowak, D. Węcel. Sprzężone zagadnienie cieplno-przepływowe chłodzenia łopatek turbin gazowych. Materiały XV Krajowej Konferencji Mechaniki Płynów, Augustów, Wrzesień 2002.
  • [154] R.G. Dominy, D.A. Kirkham, A.D. Smith. Flow development through interturbine diffusers. ASME Journal of Turbomachinery, 120:298-304, 1998.
  • [155] J. Woisetschlager, H. Jericha, W. Sanz, H.P. Pirker, A. Seyr, T. Ruckenbauer. Experimental investigation of transonic wall-jet film cooling in a linear cascade. Proceedings of 2nd Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, strony 447-451. Antwerpen, 1997.
  • [156] W. Jungowski. Podstawy Dynamiki Gazów. Wydawnictwa Politechniki Warszawskiej. Warszawa, 1975.
  • [157] S. Perycz. Turbiny parowe i gazowe. Maszyny Przepływowe, Tom 10. Zakład Narodowy im. Ossolińskich, Wydawnictwo Polskiej Akademii Nauk, 1992.
  • [158] R. Gryboś. Podstawy mechaniki płynów cz. I i II. Państwowe Wydawnictwo Naukowe. Warszawa, 1998.
  • [159] E. Tuliszka. Sprężarki, dmuchawy i wentylatory. Wydawnictwo Naukowo-Techniczne, Warszawa, 1976.
  • [160] M. Stastny, J. Brich, J. Polansky. Numerical modelling of the steam flow through a balanced control valve. Proceedings of Conference on Modelling and Design in Fluid-Flow Machinery, strony 117-182, Gdańsk, 1997. Wydawnictwo IMP PAN, Edited by J. Badur et al.
  • [161] M. Stastny, L. Bednar, L. Taje, P. Kolar, P. Martinu, R. Matas. Pulsating flows in the inlet of a nuclear steam turbine. Proceedings of 5th Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, strony 677-686, Praha, 2003. Edited by M. Stastny et al.
  • [162] B.N. Agaphonov, V.D. Goryachev, V.G. Kolyanov, V.V. Ris, E.M. Smirnov, D.K. Zaitsev. Simulation of 3D turbulent flow through steam-turbine control valves. Report of Technical University of Tversk, 1999:1-10, 1999.
  • [163] K.A. Thole, M. Gritsh, A. Schulz, S. Wittig. Flowfield measurements for film-cooling holes with expanded exits. ASME Journal of Turbomachinery, 120:327-336, 1998.
  • [164] B. Sen, D.L. Schmidt, D.G. Bogard. Film cooling with compound angle holes: Heat transfer. ASME Journal of Turbomachinery, 118:800-806, 1996.
  • [165] H.H. Cho, D.H. Rhee, B.G. Kim. Enhancement of film cooling performance using a shaped film cooling hole with compound angle injection. JSME International Journal, Series B, 44(1):99-110, 2001.
  • [166] The V94.2A gas turbine a further development of proven technology. Folder Reklamowy Siemens Power Generation, 1997.
  • [167] J.E. Gill. Uprate options for the MS900A heavy-duty gas turbine. Technical Paper GE Power Systems, (GER-3928A):1-18, 1995.
  • [168] N. Hay, D. Lampard. Discharge coefficient of turbine cooling holes: A review. ASME Journal of Turbomachinery, 120:314-319, 1998.
  • [169] W. Bathie. Fundamentals of Gas Turbines. John Willey & Sons, New York, 1980.
  • [170] K.T. McGovern, J.H. Leylek. A detailed analysis of film-cooling physics: Part II -compound-angle injection with cylindrical holes. ASME Journal of Turbomachinery, 122:113-121, 2000.
  • [171] D.K. Walters, J.H. Leylek. A detailed analysis of film-cooling physics: Part I - streamwise injection with cylindrical holes. ASME Journal of Turbomachinery, 122:102-112, 2000.
  • [172] D.K. Walters, J.H. Leylek. Impact of film-cooling jets on turbine aerodynamic losses. ASME Journal of Turbomachinery, 122:537-545, 2000.
  • [173] H.A. Rydholm. An experimental investigation of the velocity and temperature fields of cold jets into a hot crossflow. ASME Journal of Turbomachinery, 120:320-326, 1998.
  • [174] I. Gartshore, M. Salcudean, I. Hassan. Film cooling injection hole geometry: Hole shape comparison for cooling orientation. AIAA Journal, 39(8): 1493-1499, 2001.
  • [175] S.V. Ekkad, D. Zapata, J.C. Han. Film effectiveness over a flat surface with air and CO2 injection through compound angle holes using a transient liquid crystal image method. ASME Journal of Turbomachinery, 119:587-593, 1997.
  • [176] C.A. Hale, M.W. Pleśniak, S. Ramadhyani. Film cooling effectiveness for short film cooling holes fed by a narrow plenum. ASME Journal of Turbomachinery, 122:553-557, 2000.
  • [177] A. Kohli, D.G. Bogard. Fluctuating thermal field in the near-hole region for film cooling flows. ASME Journal of Turbomachinery, 120:86-91, 1998.
  • [178] D. Lakehal, G.S. Theodoridis, W. Rodi. Computation of film cooling of a flat plate by lateral injection from a row of holes. International Journal of Heat and Fluid Flow, 19:418-430, 1998.
  • [179] D.G. Hyams, J.H. Leylek. A detailed analysis of film-cooling physics: Part III - streamwise injection with shaped holes. ASME Journal of Turbomachinery, 122:122-132, 2000.
  • [180] J.H. Leylek, R.D. Zerkle. Discrete-jet cooling: A comparison of computational results with experiments. ASME Journal of Turbomachinery, 116:358-368, 1994.
  • [181] D.K. Walters, J.H. Leylek. A systematic computational methodology applied to a three-dimensional film-cooling flowfield. ASME Journal of Turbomachinery, 119:777-785,1997.
  • [182] R.A. Brittingham, J.H. Leylek. A detailed analysis of film-cooling physics: Part IV - compound-angle injection with shaped holes. ASME Journal of Turbomachinery, 122:133-145, 2000.
  • [183] H. Brandt. Suction side film cooling on the turbine cascade T106-300 - aerodynamic and heat transfer measurements. Test Case Documentation, Unversitat der Bundeswehr, Monachium, (LRT-WE12-01/03):l-23, 2001.
  • [184] K.A. Thole, M. Gritsh, A. Schulz, S. Wittig. Effect of a crossflow at the entrance to a film-cooling hole. ASME Journal of Turbomachinery, 119:533-540, 1997.
  • [185] G. Wilfert, S. Wolff. Influence of internal flow on film cooling effectivness. ASME Journal of Turbomachinery, 122:327-333, 2000.
  • [186] M.J. Findlay, M. Salcudean, I.S. Gartshore. Jets in a crossflow: Effects of geometry and blowing ratio. ASME Journal of Fluids Engineering, 121:373-378, 1999.
  • [187] D.L. Schmidt, B. Sen, D.G. Bogard. Film cooling with compound angle holes: Adiabatic effectiveness. ASME Journal of Turbomachinery, 118:807-813, 1996.
  • [188] S.V. Ekkad, J.C. Han, H. Du. Detailed film cooling measurements on a cylindrical leading edge model: Effect of free-stream turbulence and coolant density. ASME Journal of Turbomachinery, 120:799-807, 1998.
  • [189] A.A. Ameri, D.L. Rigby. A numerical analysis of heat transfer and effectiveness on film cooled turbine blade tip models. Report of NASA/CR-1999-209165, strony 1-7, 1999.
  • [190] J.D. Heidmann, A.A. Ameri, D.L. Rigby. A three-dimensional coupled internal/external simulation of a film-cooled turbine vane. ASME Journal of Turbomachinery, 122:348-359 2000.
  • [191] A. Kohli, D.G. Bogard. Effects of very high free-stream turbulence on the jet-mainstream interaction in a film cooling flow. ASME Journal of Turbomachinery, 120:785-790,1998.
  • [192] C. Saumweber, A. Schulz, S. Wittig. Free-stream turbulence effects on film cooling with shaped holes. ASME Journal of Turbomachinery, 125:65-73, 2003.
  • [193] S.W. Burd, R.W. Kaszeta, T.W. Simon. Measurements in film cooling flows: Hole l/d and turbulence intensity effects. ASME Journal of Turbomachinery, 120:791-798, 1998.
  • [194] M.A. Habib, A.M. Mobarak, M.A. Sallak, E.A. Abdel-Hadi, R.I. Affify. Experimental investigation of heat transfer and flow over baffles of different heights. ASME Journal of Heat Transfer, 116:363-368, 1994.
  • [195] M. Al-Qahtani, H.C. Chen, J.C. Han. A numerical study of flow and heat transfer in rotating rectangular channels (AR= 4) with 45 deg rib turbulators by reynolds stress turbulence model. ASME Journal of Heat Transfer, 125:19-26, 2003.
  • [196] B. Bonhoff, S. Parneix, J. Leusch, B.V. Johnson, J. Schabacker, A. Boles. Experimental and numerical study of developed flow and heat transfer in coolant channels with 45 degree ribs. International Journal of Heat and Fluid Flow, 20:311-319, 1999.
  • [197] A. Haasenritter, M. Weissschuh, B.. Weigand. Numerical investigations on the effect of rotation in cooling channels. Proceedings of 5th Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, strony 413-421, Praha, 2003. Edited by M. Stastny et al.
  • [198] Y.J. Jang, H.C. Chen, J.C. Han. Computation of flow and heat transfer in two-pass channels with 60 deg ribs. ASME Journal of Heat Transfer, 123:563-575, 2001.
  • [199] H. Iacovides, B.E. Launder. Computational fluid dynamics applied to internal gas-turbine blade cooling: A review. International Journal of Heat and Fluid Flow, 16:454-470, 1995.
  • [200] S.C. Cheah, H. Iacovides, D.C. Jackson, H. Ji, B.E. Launder. LDA investigation of the flow development through rotating U-ducts. ASME Journal of Turbomachinery, 118:590-596, 1996.
  • [201] S. Mochizuki, J. Takamura, S. Yamawaki, W.J. Yang. Heat transfer in serpentine flow passages with rotation. ASME Journal of Turbomachinery, 116:133-140, 1994.
  • [202] N. Abuaf, D.M. Kercher. Heat transfer and turbulence in a turbulated blade cooling circuit. ASME Journal of Turbomachinery, 116:169-177, 1994.
  • [203] D. Thurman, P. Poinsatte. Experimental heat transfer and bulk air temperature measurements for a multipass internal cooling model with ribs and bleed. Report of NASA/TM-2000-209772, strony 1-7, 2000.
  • [204] H. Iacovides, M. Raisee. Recent progress in the computation of flow and heat transfer in internal cooling passages of turbine blades. International Journal of Heat and Fluid Flow, 20:320-328, 1999.
  • [205] P. Adami, E. Belardini, F. Martinelli. Three dimensional unsteady investigation of cooled HP turbine stages. Proceedings of 5th Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, strony 535-549, Praha, 2003. Edited by M. Stastny et al.
  • [206] A. Azzi, D. Lakehal. Perspective modeling film cooling of turbine blades by transcendig conventional two-equation turbulence models. ASME Journal of Turbomachinery, 124:472-184, 2002.
  • [207] V.K. Garg. D.L. Rigby. Heat transfer on a film-cooled blade - effect of hole physics. International Journal of Beat and Fluid Flow, 20:10-25, 1999.
  • [208] J. Thevenin, M. Amaral, H. Malvos, L. Mauillon. Computation of a three-dimensional swirling jet into a crossflow using a Reynolds stress turbulence model. Proceedings of ECCOMAS'98, strony 1082-1087. John Wiley & Sons, Ltd, 1998.
  • [209] B.A. Haven, M. Kurosaka. Kidney and anti-kidney vortices in crossflow jets. Journal of Fluid Mechanics, 352:27-64, 1997.
  • [210] G. Wilfert, L. Fottner. The aerodynamic mixing effect of discrete cooling jets with mainstream flow on a highly loaded turbine blade. ASME Journal of Turbomachinery, 118:468-478, 1996.
  • [211] M. Karcz. Powiązanie modelu turbulencji dynamicznej k-v'2-f z termicznym 0'2-ε0. Opracowanie Wewnętrzne IMP PAN, (2660):l-24, 2002.
  • [212] CU. Buice, J.K. Eaton. Experimental investigation of flow through an asymmetric plane diffuser. Annual Research Briefs of Center for Turbulence Research of Stanford University, (1995):117-120, 1995.
  • [213] D.M. Driver, H.L. Seegmiller. Features of a reattaching turbulent shear layer in divergent channel flow. AIAA Journal, 23:163-171, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0006-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.