PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania aerodynamiki układów łopatkowych turbin z wykorzystaniem metod obliczeniowych mechaniki płynów

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Słowa kluczowe
Twórcy
autor
Bibliografia
  • [2.1] Chmielniak T., l989, Podstawy teorii profilów i palisad łopatkowych, Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom 4, Wrocław-Warszawa-Kraków-Gdańsk-Łódź.
  • [2.2] Puzyrewski R., 1992, Podstawy teorii maszyn wirnikowych w ujęciu jednowymiarowym, Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom 8, Wrocław-Warszawa-Kraków.
  • [2.3] Batchelor G.K., 1970, Introduction to Fluid Dynamics, Cambridge University press.
  • [2.4] Shermann F.S., l990, Viscous flow, McGraw-Hill, New York.
  • [2.5] Anderson D.A, Tannehill J.C., Pletcher R.H., 1984, Computational fluid mechanics and heat transfer, Hemisphere Publishing, New York.
  • [2.6] Puzyrewski R., Sawicki J., 2001, Podstawy mechaniki płynów i hydrauliki, Wyd. III, PWN, Warszawa.
  • [2.7] Wilcox D.C., 1993, Turbulence modelling for CFD, DCW Industries, La Canada, California.
  • [2.8] Tulapurkara E.G., 1997, Turbulence models for the computation of flow past airplanes, Prog. Aerospace Sci., Vol. 33, pp. 71-165.
  • [2.9] Elsner J.W., l987, Turbulencja przepływów, PWN, Warszawa.
  • [2.10] Gatski T.B., 1996, Modelling compressibility effects on turbulence, In: New tools in turbulence modelling, Eds. Metais O., Ferziger J., Springer-Verlag, Berlin-Heidelberg, pp.73-104.
  • [2.11] Barre S., Bonnet J.-P., Gatski T.B., Sandham N.D., 2002, Compressible, high speed flows, In: Closure strategies for turbulent and transitional flows, eds. Launder B.E., Sandham N.D., Cambridge University Press, Cambridge, UK, pp. 522÷581.
  • [2.12] Adumitroaie V., Ristorcelli J.R., Taulbee D.B., 1998, Progress in Favre-Reynolds stress closures for compressible flows, ICASE Rep. 98÷21.
  • [2.13] Launder B.E., Reece G.J., Rodi W., 1975, Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mechanics, Vol. 68, part 3, pp. 537÷566.
  • [2.14] Hanjalic K., 2000, Second moment (Reynolds stress) turbulence closures, VKI LS 2000-04.
  • [2.15] Hanjalic K., 2001, Second-moment turbulence closures: Rationale and basic models; Complex turbulent flow: Potentials of second moment closures and examples of application; Closure models for turbulent flow driven by thermal buoyancy and other body forces, Materiały Szkoły Letniej Mechaniki Płynów, Olsztyn, 24-27 września, pp. l÷60.
  • [2.16] Aupoix B., 2000, Introduction to turbulence modelling for compressible flows, VKI LS 2000-04.
  • [2.17] Launder, 1988, On the computation of convective heat transfer in complex flows, Trans. ASME J. Heat Transfer, Vol. 110, pp. 112-128.
  • [2.18] Lai Y.G., So R.M.C., 1990, A near-wall modelling of turbulent heat fluxes, Int. J. Heat Mass Transfer, Vol. 33, No. 7, pp. 1429÷1440.
  • [2.19] Hanjaltc K., 1994, Advanced turbulence closure models: A view of current status and future prospects, Int. J. Heat Fluid Flow, Vol. 15, No.3, pp. 178÷203.
  • [2.20] Speziale C.G., Gatski T.B., l997, Analysis and modelling of anisotropies in the dissipation rate of turbulence, J. Fluid Mech. Vo. 344, pp. 155÷180.
  • [2.21] Gatski T.B., Rumsey C.L., 2002, Linear and nonlinear eddy viscosity models, In: Closure strategies for turbulent and transitional flows, eds. Launder B.E., Sandham N.D., Cambridge University Press, Cambridge, UK, pp. 9-46.
  • [2.22] Nagano Y., 2002, Modelling heat transfer in near-wall flows, In: Closure strategies for turbulent and transitional flows, eds. Launder 8.E., Sandham N.D., Cambridge University Press, Cambridge, UK, pp. 188-247.
  • [2.23] Bradshaw P., 1977, Compressible turbulent shear layers, Ann. Rev. Fluid Mech., Vol. 9, pp. 33÷54.
  • [2.24] Blaisdell A., Mansour N.N., Reynolds W.C., 1993, Compressibility effects on the growth and structure of homogeneous trubulent shear flow, J. Fluid Mech., Vol. 256, pp.443÷485.
  • [2.25] Lele S.K., 1994, Compressibility effects on turbulence, Ann. Rev. Fluid Mech., Vol. 26, pp. 211÷254.
  • [2.26] Cebeci T., Smith A.M.O, 1974, Analysis of Turbulent boundary layers, Ser. in Appl. Math. Mech., Vol. XV, Academic Press, Orlando-New York.
  • [2.27] Baldwin, B.S., Lomax, H., 1978 Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows, AIAA P. No. 78÷257.
  • [2.28] Johnson D.A., King L.S., l985, Mathematically simple turbulence closure model for attached and separated turbulent boundary layers, AIAA J., Vol. 19, No. 1l, 1684÷1692.
  • [2.29] Pope S.B., 2000, Turbulent flows, Cambridge University Press.
  • [2.30] Van Driest E.R., 1956, On turbulent flow near a wall, J. Aeronautical Sci., Vol. 23, No. 1l, pp. 1007-101.
  • [2.31] Clauser F.H., 1956, The turbulent boundary layer, Advances in Applied Mechanics, Vol. IV, pp. l÷51, Academic Press, New York.
  • [2.32] Klebanoff P.S., 1954, Characteristics of turbulence in a boundary layer with zero pressure gradient, NACA Rep. TN 3178.
  • [2.33] Yershov S., Rusanov A., 1997, Modification of algebraic turbulence model used in code FlowER Zeszty Naukowe IMP PAN 486/97, pp.95=l02.
  • [2.34] Yershov S., Rusanov A., 1997, The application package FlowER for the calculation of 3D viscous flows through multi stage machinery, Certificate of registration of copyright' Ukrainian state agency of copyright and related rights, Kiev.
  • [2.35] Yershov S., Rusanov A., Gardzilewicz A., Lampart P., Świrydczuk J., l998, Numerical simulation of viscous compressible flows in axial turbomachinery, TASK Quart., Vol. 2, No. 2, pp.319÷347.
  • [2.36] Proc. ERCOFTAC Seminar and Workshop on Turbomachinery Flow Prediction I÷VIII, 1993÷2002.
  • [2.37] Lampart P., Świrydczuk J., Gardzilewicz A.,2OO1, on the prediction of flow patterns and losses in HP turbine stages using 3D RANS solver and two turbulence models, TASK Quart., Vol. 5, No. 2, pp.191-206.
  • [2.38] Menter F.R., l992, Performance of popular turbulence models for attached and separated adverse pressure gradient flows, AIAA J. Vol. 30, No. 8, pp. 2066÷2072.
  • [2.39] Goldberg U.C., 1991, Derivation and testing of a one-equation model based on two time scales, AIAA J., Vol. 29, No. 8, pp. 1337÷1340.
  • [2.40] Baldwin, B.S., Barth T.J., l99l, A one-equation transport model for high Reynolds number wallbounded flows, AIAA Pap. 9l-0610.
  • [2.41] Spalart P.R., Almaras S.R., l992, A one-equation turbulence model for aerodynamic flows, AIAA Pap.92439.
  • [2.42] Spalart P.R., Shur M., 1997, on the sensitisation of turbulence models to rotation and curvature, Aerospace Sci. Technology, Vol. 5, pp. 297 -302.
  • [2.43] Dacles-Mariani J.,Zilliac G.C., Chow J.S., Bradshaw P., 1995, Numerical/experimental study of a wingip vortex in the near field, AIAA J., Vol. 33, pp. l56l÷l568.
  • [2.44] Solodov V.G., 200l, The gas dynamics of the exhaust diffusers: computational aspects, TASK Qualt., Vol. 5, No. 4, pp.495=517.
  • [2.45] Solodov V.G., Starodubtsev Y.V., 2003, Numerical model of viscous turbulent flow in inlet pipe-Ist stage compartment of power steam turbine, Trans. IFFM, Vol. 114, pp. 191-200.
  • [2.46] Fluent/UNS/Rampant, 2000, User's Guide, Fluent Inc.
  • [2.47] Jones W.P., Launder B.E., 1973, The calculation of low-Reynolds number phenomena with a two equation model of turbulence, Int. J. Heat and Mass Transfer, Vol. 16, pp. 301-314.
  • [2.48] Launder B.E., Sharma B.L, 1974, Application of energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Letters in Heat and Mass Transfer, Vol. I, No. 2, pp. 131÷138.
  • [2.49] Chien K.Y., 1982, Predictions of channel and boundary-layer flows with a low-Reynolds number turbulence model, AIAA J., Vol. 20, No. 1, pp. 33÷38.
  • [2.50] Lam C.H.G., Bremhorst K.A., 1981,Modified form of k-? model for predicting wall turbulence, Trans. ASME, J. Fluids Engng., Vol. l03, pp.456÷460.
  • [2.51] Nagano Y., Tagawa M., 1990, An improved k-? model for boundary layer flows, Trans. ASME, J. Fluids Engng, Vol. 112, pp. 33-39.
  • [2.52] Yang Z., Shih T.H, l993, A new time scale based k-? model for wear wall turbulence, AIAA J., Vol. 31, No. 7, pp. 1191÷1198.
  • [2.53] Yakhot V., Orszag S.A., l986, Renormalization group analysis of turbulence: l. Basic theory, J. Scientific Computing, Vol. l, pp. 3÷51.
  • [2.54] Durbin P.A., 1991, Near wall turbulence closure modelling without damping functions, Theoretical & Computational Fluid Dynamics, Vol. 3, No. I, pp. l÷13.
  • [2.55] Durbin P.A., 1995, Separated flow computations with the k-e-v2 model, AIAA J., Vol. 33, No. 4, pp.659-664.
  • [2.56] Speziale C.G., 1991, On nonlinear k-l and k-e models of turbulence J.Fluid Mech. Vol. l78, pp. 459÷475.
  • [2.57] Speziale C.G., 1991,Analythicalmethodsforthedevelopmentof Reynolds stress closures in turbulence, Ann. Rev. Fluid Mechanics, Vol. 23, pp. 107÷157.
  • [2.58] Wilcox D.C., 1988, Reassessment of the scale-determining equation for advanced turbulence models, AIAA J., Vol. 26 No. 11, pp. l299÷l310.
  • [2.59] Menter F.R., l992, Influence of free stream values on k-?;furbulence model predictions, AIAA J., Vol.30, No.6, pp. 1657÷1659.
  • [2.60] Chima R.V., l996, A k-? turbulence model for quasi-three-dimensional turbomachinery flows, AIAA Pap., No 96-0248.
  • [2.61] Wilcox D.C., 1994, Simulation of transition with a two-equation turbulence model, AIAA J., Vol. 32, No. 2, pp.241÷255.
  • [2.62] Menter F.R., 1994, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., Vol. 32, No. 8, pp. 1598-1605.
  • [2.63] Menter F.R., l996, A Comparison of Some Recent Eddy-Viscosity Turbulence Models, Trans. ASME J. Fluids Engineering, Vol. 118, No. 3, pp. 514÷519.
  • [2.64] Speziale C.G., Abid R., Anderson E.C., 1992, Critical evaluation of two-equation models for nearwall turbulence, AIAA J., Vol. 30, pp. 324÷331.
  • [2.65] Zeierman S., Wolfshtein M., 1986, Turbulent time scale for turbulent calculations, AIAA J., Vol. 24,No. 10, pp. 1606÷1610.
  • [2.66] Smith B.R., 1994, A near wall model for the k-l two equation turbulence model, AIAA Pap. 94-2386.
  • [2.67] Smith B.R., 1990, The k-kl turbulence and wall layer model for compressible flows, AIAA Pap. 90-l 483.
  • [2.68] Sarkar S., Erlebacher G., Hussain M.Y., Kriess H.O., 1991, The analysis and modelling of dilatational terms in compressible turbulence, J. Fluid Mech., Vol. 227,pp.473÷493.
  • [2.69] Sarkar, 1992, The pressure-dilatation correlation in compressible flows, Phys. Fluids A, Vol. 4, No. 12, 2674÷2682.
  • [2.70] Zeman O, 1990, Dilatational dissipation: The concept and application in modelling compressible mixing layers, Phys. Fluids A, Vol. 24, No. 10, pp. 1606÷1610.
  • [2.71] Wilcox, 1992, Dilatation-dissipation correlation for advanced turbulence models, AIAA J., Vol. 30, No. 11, pp. 2639÷2646.
  • [2.72] Schmidt R.C., Pantakar S.V., 1991, Simulating boundary layer transition with low-Reynolds number k-? turbulence models, Part l- An evaluation of prediction characteristics,Part2 - An approach to improving the predictions, Trans. ASME J. Fluids Engng., Vol. 113, No. I, pp. 10-26.
  • [2.73] Cleak J.G.E., Gregory-Smith D.G., 1992, Turbulence modelling for secondary flow prediction in a turbine cascade, Trans. ASME J. Turbomachinery, Vol. 114, No. 3, pp. 590÷598.
  • [2.74] Savill M.,2002, By-pass transition using conventional closures, In: Closure strategies for turbulent and transitional flows, eds. Launder B.E., Sandham N.D., Cambridge University Press, Cambridge' UK, pp.464-492.
  • [2.75] Dhawan S., Narasimha R., 1958, Some properties of boundary layer flow during the transition from laminar to turbulentn motion, J. Fluid Mech., Vol. 3, pp. 418÷436.
  • [2.76] Savill M.,2002, New strategies in modelling by-pass transition, In: Closure strategies for turbulent and transitional flows, eds. Launder B.8., Sandham N.D., Cambridge University Press, Cambridge, UK, pp.493÷521.
  • [2.77] Steelant J., Dick E, 1996, Modelling of bypass transition with conditioned Navier-Stokes equations coupled to an intermittency transport equation, Int. J. Numerical Methods in Fluids, Vol. 23, pp.193÷220.
  • [2.78] Cho J.R., Chung M.K., A k-e-y equation turbulence model, J.Fluid Mech., Vol. 237, pp.301÷322.
  • [2.79] Suzen Y.R., Huang P.G., 1999, Modeling of flow transition using an itermittency transport equation' Rep. NASA/CR- 1999-209313.
  • [2.80] Launder B.E., Priddin C.H., Sharma B.I., 1971, Calculation of turbulent boundary layers on spinning and curved surfaces, Trans. ASME J. Fluids Engng, Vol. 99, pp.231-236.
  • [2.81] Patel V.C., Sotiropoulos F., 1997, Longitudinal curvature effects in turbulent boundary layers, Prog. Aerospace Sci., Vol. 33, pp. l÷70.
  • [2.82] Kazimierski Z., l992, Numeryczne wyznaczanie trójwymiarowych przepływów turbulentnych, Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom 11, Wrocław-Warszawa-Kraków.
  • [2.83] Hanjalic K., Launder B.E., 1972, A Reynolds stress model of turbulence and its application to thin shear flows, J. Fluid Mech., Vol. 52,Part 4, pp. 609-638.
  • [2.84] Hanjalic K., Launder 8.E., 1976, Contribution towards a Reynolds-stress closure for low-Reynolds- number turbulence, J. Fluid Mech., Vol. 74,Part 4, pp. 593÷610.
  • [2.85] Weinstock J., l98l-82, Theory of pressure-strain-rate correlation for Reynolds stress turbulence closures, Part I, Off-diagonal elements, J. Fluid Mech. Vol. 105, pp. 369÷396, Part 2, Diagonal elements, J. Fluid Mech., Vol. 116, pp. 1-29.
  • [2.86] Speziale C.G., Sarkar S., Gatski T.B., 1991, Modelling the pressure strain correlation of turbulence, J. Fluid Mechanics, Vol. 227, pp.245-272.
  • [2.87] Rautaheimo P., Salminen E., Siikonęn T., 1999, Numerical simulation of the flow in the NASA low-speed centrifugal compressor. Rep. No. 119, Helsinki University of Technology.
  • [2.88] Lumley J.L., 1978, Computational modelling of turbulent flows, Adv. Appl. Mech., Vol. 18, pp. 123÷176.
  • [2.89] Launder B.E., Tselepidakis D.P., Younis B.A., 1987, A second moment closure study of rotating channel flow. J. Fluid Mech., Vol. l83, pp. 63÷75.
  • [2.90] Craft T.J., Launder B.E., l996, Reynolds stress closure designated for complex geometries, Int. J. Heat Fluid Flow, Vol. 17, No. 3, pp.245-254.
  • [2.91] Sarkar S., Lakshmanan B., 1991, Application of a Reynolds stress turbulence model to the compressible shear layer, AIAA J., Vol. 29, No. 3, pp. 743÷749
  • [2.92] Rodi W., 1976, A new algebraic relation for calculating Reynolds stresses, ZANIM, Vol. 56, pp. 219÷221.
  • [2.93] Gatski T.B., Speziale C.G., 1993, On explicit algebraic stress models for complex turbulent flows, J. Fluid Mech., Vol. 254, pp. 59÷78.
  • [2.94] Nagano Y., Kim C., l988, A two-equation model for heat transport in wall turbulent shear flows, Trans. ASME J. Heat Transfer, Vol. 110, No. 3, pp. 583÷589.
  • [2.95] Youssef M.S., Nagano Y., Tagawa M., 1992, A two-equation heat transfer model for predicting turbulent thermal fields under arbitrary wall thermal conditions, Int. J. Heat Mass Transfer, Vol. 35, pp. 3095÷3104.
  • [2.96] Karcz M., 2004, Analiza pracy dyfuzorów termicznych w aspekcie chłodzenia turbin parowych, Praca doktorska, IMP PAN Gdańsk.
  • [2.97] Gibson M.M., Launder B.E., 1978, Ground effects on pressure fluctuation in the atmospheric boundary layer, J. Fluid Mech., Vol. 86, pp. 491-51l.
  • [2.98] Moin P., Mahesh K., 1998, Direct numerical simulation a-tool in turbulence research, Ann. Rev. Fluid Mechanics, Vol. 30, pp. 539÷578.
  • [2.99] Sandham N.D., 2002, Introduction to direct numerical simulation, In: Closure strategies for turbulent and transitional flows, eds. Launder Cambridge, UK, pp. 248÷266.
  • [2.100] Coleman G.N., Sandham N.D., 2002, Direct numerical simulation of separation bubbles, In: Closure strategies for turbulent and transitional flows, eds. Launder B.E., Sandham N.D., Cambridge University Press, Cambridge, UK, pp.702÷719.
  • [2.101] Durbin P.A., Jacobs R.G., Wu X.,2002, DNS of bypass transition, In; Closure strategies for turbulent and transitional flows, eds. Launder B.E., Sandham N.D., Cambridge Universiti press, Cambridge, UK, pp. 449-465.
  • [2.102] Tuliszka-Sznitko E., Soong C.Y., Sene E., Bontoux P.,2001, Instability of the non-isothermal flow between a rotating and stationary discs, TASK Quart., Vol. 5, No. 4, pp. 557÷5ó6.
  • [2.103] Wu X., Durbin P.A., 2001, Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage, J. Fluid Mech., Vol. 446, pp. 199÷229.
  • [2.104] Ferziger J.H., 1996, Large eddy simulation, In: Simulation and modelling of turbulent flows, Eds. Gatski T.B., Hussaini M.Y., Lumley J.L., Oxford University press, pp. 109÷154.
  • [2.105] Lesieur M., Metais O., 1996, New trends in large eddy simulation of turbulens, Ann. Rev. Fluid Mechanics, Vol. 28., pp.45-82.
  • [2.106] Lesieur M., Metais O., 2001, Turbulence dynamics, Materiały Szkoły Letniej Mechaniki Płynów, Olsztyn, 24-27 września, pp. 92=162.
  • [2.107] Piomelli U., 2000, Large eddy and diręct simulation of turbulent flows, VKI LS 2000-04.
  • [2.108] Drobniak S.,2002, Turbulence, from stochastic to deterministic approach, Trans. IFFM, Vol. 110, pp. 103÷l 14.
  • [2.109] Comte P., 1977, Vortices in compressible LES and nontrivial geometries, In: New tools in turbulence modelling, Eds. Metais o., Ferziger J., Springer-Verlag, Berlin-Heidelberg, pp. 163-182.
  • [2.110] Smagorinsky J., l963, General circulation experiments with the primitiveequations: I. The basic equations, Mon. Weather Rev., Vol. 91, pp. 99÷164
  • [2.111] Deardorff J.W., 1971, on the magnitude of the subgrid scale eddy viscosity coefficient, J. Comp. Phys, Vol. 7, pp. 120-133.
  • [2.112] Germano M.. Piomelli U., Moin P., Cabot W.H., 1991, A dynamic subgrid scale eddy-viscosity model, Phys. Fluids A, Vol. 3, pp. 1760÷1765.
  • [2.113] Bardina J., Ferziger J.H., Reynolds W.C., 1984, Improved turbulence models based on LES of homogeneous incompressible turbulent flows, Rep. TF-I9, Mechanical Engineering Dept., Stanford University.
  • [2.114] Domaradzki J.A.,Saiki E.M., 1997, Asubgrid-scale model based on the estimation of unresolved scales of turbulence, Phys. Fluids, Vol. 9, No. 7, pp.214g÷2164.
  • [2.115] Vreman B., Guerts B., Kuerten H., l995, Subgrid modelling in LES of compressible flows. Applied Sci. Res., Vol. 54, pp. l9l÷206.
  • [2.116] Rodi W ., 2002, Large eddy simulation of the flow past bluff bodies, In: Closure strategies for turbulent and transitional flows, eds. Launder B.E., Sandham N.D., Cambridge University Press, Cambridge, UK, pp. 361÷391
  • [2.117] Bogusławski A., 2004, Nowoczesne modele podsiatkowe metody LES. Perspektywy zastosowań w modelowaniu spalania, Materiały IV Warsztatów, „Modelowanie przepływów wielofazowych w układach termochemicznych'', Stawiska, 12-14 września.
  • [2.118] Tyliszczak A. 2004, Symulacja strugi nieizotermicznej metodą LES, Materiały XVI Krajowej Konferencji Mechaniki Płynów, Waplewo, 20-23 września.
  • [2.119] Fujiwara H., Voke P.R., Arakawa C,2002, Large-eddy simulation of TL10 I.P turbine blade row, In: Engineering Turbulence Modelling and Experiments - 5, Eds. W. Rodi, N. Fueyo, Elsevier, pp. 751÷758.
  • [2.120] Casey M, Wintergerste T, 2000, Best practice guidelines, ERCOFTAC SIG ,,Quality and Trust in Industrial CFD'', Vęr. l.0.
  • [2.121] Pope S.B., 1994, Lagrangian PDF methods for turbulent flows, Ann. Rev. Fluid Mechanics, Vol. 26, pp.23÷63.
  • [2.122] Pozorski J., Wacławczyk M., Minier J.P., 2003, FulI velocity-scalar probability density function computation of heated channel flow with wall function approach, Phys. Fluids, Vol. 15, No. 5, pp. 1220÷1232.
  • [2.123] Wacławczyk M., Pozorski J., Minier J.P., 2004, Probability density function computation of turbulent flows with a new near-wall model, Phys. Fluids, Vol. l6, No. 5, pp. l4l0-l422.
  • [2.124] Sullivan D.A., 1981, Historical review of real-fluid isentropic flow models, Trans. ASME J. Fluids Engng, Vol. 103, pp. 258÷267.
  • [2.125] AungierR.H., l995,A fast accurate real gas equation of state forfluid dynamics analysis applications, Trans. ASME J. Fluids Engng, Vol. l l7, pp. 360÷366.
  • [2.126] Cravero C., Satta A., 2000, A CFD model for real gas flows, ASME Pap. 2000-GT-5 18.
  • [2.127] Sturmayr A., Hirsch Ch.,2003, Tabular IAPWS-95 steam properties formulation with switched condensation model in a 3D Navier-stokes solver, Proc. 5th Europ. Conf. on Turbomachinery, Prague, Czech Rep., March 17-22, pp.729:740.
  • [2.128] Bohn D., Kerpicci H., Ren J., Surken N., 200l, Homogeneous and heterogeneous nucleation in a nozzle guide vane of an LP steam turbine, Proc. 4th Europ. Conf. on Turbomachinery, Firenze, Italy, March 20-23, pp.813÷822.
  • [2.129] Chmielniak T.J., Wróblewski W., Dykas S., l999, Stem flow calculations in turbine channels, Proc. 3rd Europ. Conf. on Turbomachinery, March 2-5, London UK, pp. 803÷813.
  • [2.130] Wróblewski W., 2000, Calculations of the condensing water steam flows in turbine blade cascades, Turbulence. Vol. 6-7, pp.209÷224.
  • [2.131] Dykas S., 200l, Numerical calculation of the stęam condensing flow, TASK Quart'' Vol. 4, No. 4, pp.519÷535.
  • [2.132] Dykas S., Goodheart K., Schnerr G.H.,2003, Numerical study of accurate and efficient modelling for simulation of condensing flow in transonic steam turbines, Proc. 5th Europ. Conf. on Turbomachinery, Prague, Czech Rep., March 17-22, pp.75l-760.
  • [2.133] Rusanov A., Yershov S., Lampart P., Swirydczuk J., Gardzilewicz A.,2002,3D multi-stage computations of turbine flows using different state equations, TASK Quart., Vol. 6, No. 4, pp. 591 ÷600.
  • [2.134] Lampart P., Rusanov A., Yershov S., Marcinkowski S., Gardzilewicz A., 2005, Validation of a 3D solver with a state equation of thermally perfect and calorically imperfect gas on a multi-stage low-pressure steam turbine flow, Trans ASME J. Fluids Engng, Vol. 127,No. I, pp. 83÷93.
  • [2.135] Yershov S.V., 1995, Mathematical simulation of 3D turbulent separated flows within multi-row turbomachinery", D.Sc. thesis Institute of Mechanical Engineering Problems, Kharkov (in Russian).
  • [2.136] Rusanov A.V., 2004, Mathematical modelling of viscous flows in turbomachines, D.Sc. thesis, Institute of Mechanical Engineering Problems, Kharkov (in Russian).
  • [2.137] Foias C., Manley O., Rosa R., Teman R., 2001, Encyclopedia of mathematics and its applications, Navier-Stokes equations and turbulence, Cambridge University press.
  • [2.138] Hirsch C., 1988, 1990, Numerical computation of intemal and external flows, Vol. 1,2, John Wiley & Sons, Chichester-New York.
  • [2.139] Godunov S.K., Zabrodin A.V., Ivanov M.A., Kraiko A.N., Prokopov G.P., 1976, Cisliennoje rieszenieje mnogomiemych zadac gazowoj dinamiki, Nauka, Moskwa.
  • [2.140] Chmielniak T., l994, Przepływy transoniczne. Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom l6, Wrocław_Warszawa-Kraków.
  • [2.141] Dykas S., Wróblewski W., 1996, Warunki brzegowe dla przepływów transonicznych, Proc. IX Szkoły Letniej Mechaniki Płynów, Olsztyn_Nowa Kaletka, pp. l09-126.
  • [2.142] Oliger J., Sundström A., 1978, Theoretical and practical aspects of some initial boundary value problems in fluid dynamice, SIAM J. Appl. Math., Vol. 35, No. 3, pp. 419÷446.
  • [2.143] Duft P., 1988, Stable boundary conditions and difference schemes for Navier-Stokes equations, SIAM J. Numerical Analysis, Vol. 25, No. 2, pp. 245÷267.
  • [2.144] Fletcher C.A.J., 1988, "Computational Techniques for Fluid Dynamics, 2. Specific Techniques for Different Flow Categories,'' Springer_Verlag, Berlin-Heidelberg.
  • [2.145] Norström J., l989, The influence of open boundary conditions on the convergencę to steady state for the Navier-Stokes equations, J. Comp. Phys., Vol. 85, No. 1, pp.210÷244.
  • [2.146] Błażko E., Lidke M., 1996, TUR-96 - program obliczeń cieplno-przepływowych układów łopatkowych turbin danej geometrii, Opr. Diagnostyka Maszyn sp. z o.o., Gdansk, No. 21196.
  • [2.147] Ferziger J.H., Peric M., l996, Computational methods for fluid dynamics, Springer-Verlag, Berlin- Heidelberg.
  • [2.148] Lax P.D., WendroffB., l964, Difference scheme for hyperbolic equations with high order accuracy, Comm. Pure Applied Math., Vol. 17, pp. 381÷398.
  • [2.149] McCormack R'W', l969' The ęffęct of viscosity in hypervelocity impact cratering, AIAA Pap. 69-354.
  • [2.150] Jameson A., Schmidt W., Turkel E., 1981, Numerical simulation of the Euler equations by finite volume method using Runge-Kutta time stepping schemes, AIAA Pap. 8l-l259.
  • [2.151] Pulliam T.H., l986, Artificial dissipation models for the numerical computation of discontinuous solutions of the equations of fluid dynamics, AIAA J., Vol.24, No. 12, pp. 193l÷1940.
  • [2.152] Liu F., Jameson A., l990, Multigrid Euler calculations for three-dimensional cascade, AIAA Pap. 90-688.
  • [2.153] Denton J.D., An improved time marching method for turbomachinery flow calculation, Trans. ASME J.Engng Power, Vol. 105, pp.514-524.
  • [2.154] Dawes W.N., 1992, The simulation of three-dimensional viscous flow in turbomachinery geometries using a solution-adaptative unstructured mesh methodology, Trans. ASME J. Turbomachinery, Vol. 114, pp. 528÷537.
  • [2.155] Steger J.L., Warming R.F., 1981, Flux vector splitting of the inviscid gas dynamic equations with applicatrions to finitę diflerence methods, J' Comp. Phys., Vol. 40' pp' 263=293.
  • [2.156] van Leer B.' l982, Flux-vector splitting for the Euler equations, Lecture Notes in Physics, Vol. 170, pp. 507÷512.
  • [2.157] Roe P.L., l98l, Approximate Riemann solvers' parameter vectors and difference schemes, J. Computational Physics, Vol. 43, pp. 351-372.
  • [2.158] Osher l984, Riemann solvers, the entropy condition and difference approximation, SIAM J. Numerical Analysis, Vol. 21, pp.217÷235.
  • [2.159] Wróblewski W., l996, Numeryczne metody rozwiązywania równań Eulera i Navier-Stokesa, Proc. IX Szkoły Letniej Mechaniki Płynów, Olsztyn-Nowa Kaletka, pp. 69-l07.
  • [2.160] Kolgan W.P., 1972, Numerical schemes for solving problems in gas dynamics, Proc. Aerodynamics Inst., Vol. 3, No. 6, pp. 68÷77 (in Russian).
  • [2.161] van Leer B., 1974, 1979, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme, J. Comp. Phys., Vol. l4, pp. 361=370, V. A second-order sequel to Godunov's method, J. Comp. Phys., Vol. 32, pp. l0l÷l36.
  • [2.162] Harten A., l983, High resolution schemes for hyperbolic conservation laws, J. Computational Physics, Vol. 49, No. 3, pp. 257÷293.
  • [2.163] Chakravarthy S.R., Szema K.Y., Goldberg V.C., Gorski J.J., 1985, Application of a new class of high accuracy TVD schemes to the Navier-Stokes equations, AIAA Pap. 85-0165.
  • [2.164] Harten A., Osher S., 1987, Uniformly high-order accurate non-oscillatory schemes, SIAM J. Numerical Analysis, Vol.24,No 2., pp.279÷309.
  • [2.165] Harten A., Enquist B., osher S., Chakravarthy S., l987, Uniformly high order essentially nonoscillatory schemes, III, J. Comp. Phys., Vol. 71,pp.231-303.
  • [2.166] Shu C.W., Osher S,, l988, l989, Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comp. Phys., Vol. 77,pp,439÷471, Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. Comp. Phys., Vol. 83, pp. 32-78.
  • [2.167] Yershov S.V., l994, The quasi-monotonous ENo scheme of increased accuracy for integrating Euler and Navier-Stokes equations, Math. Modelling, Vol. 6, No. 11, pp. 58÷64 (in Russian).
  • [2.168] Liu X.D., Osher S., Chan T., 1994, Weighted essentially non-oscillatory schemes, J. Comp. Phys., Vol. 115, pp.200÷212.
  • [2.169] Jiang G.S., Shu C.W., 1996, Efficient implementation of weighted ENO schemes, J. Comp. Phys., Vol. 126, pp.202-228.
  • [2.170] Wang Z.J., Chen R.F., 2001, Optimised weighted essentially non-oscillatory schemes for linear waves with discontinuity, J. Comp. Phys., Vol. l74, pp.38l÷404.
  • [2.171] Beam R.M., Warming R.F., l978, An implicit factored scheme for the compressible Navier-Stokes equations, AIAA J., Vol. l6, No 4, pp. 393÷402.
  • [2.172] Badur J., Ochrymiuk T., l998, Modelowanie turbulentnego spalania gazów z uwzględnieniem zredukowanej i pełnej kinetyki reakcji chemicznych, Zeszyty Naukowe IMP PAN 49l/98.
  • [2.173] Rusanov A.V., Yershov S.V., 1997, Simulation of 3D unsteady viscous flow generated by interaction of reciprocally moving turbomachinery cascades, Proc. Int. Conf. Modelling and Design in Fluid-Flow Machinery, Gdansk, Poland, October l8-21, pp. 153÷160.
  • [2.174] Tajc L., Polansky J., 1999, Vypocty proudeni labyrintovymi ucpavkami, Rep. Skoda, Plzen.
  • [2.175] Anker J.E., Mayer J., Stetter H., 2001, Computational study of the interaction of labyrinth seal leakage flow and main flow in an axial turbine, Proc. 4th Europ. Conf. On Turbomachinery Fluid Dynamics and Thermodynamics, Florence, Italy, March l8-23, pp. 639÷653.
  • [2.176] Hunter S.D., Manwaring S.R.,2000, Endwall cavity flow effects on gaspath aerodynamics in an axial flow turbine, Part I - Experimental and numerical investigations, ASME Pap. 2000-GT-65l.
  • [2.177] Yershov S., Rusanov A., Lampart P., Gardzilewicz A.,2000, A numerical method for Navier-Stokes simulation of flow in axial multi-row turbine blade-to-blade passages with source/sink-type boundary conditions for leakage flows, Proc. Seminar Topical Problems of Fluid Mechanics, 2000, Prague, Czech Rep., February 16, pp. 93÷96.
  • [2.178] Lampart P., Gardzilewicz A., Yershov S., Rusanov A., 2000, Investigation of flow characteristics of an HP turbine stage including the effect of tip leakage and windage flows using a 3D Navier-Stokes solver with source/sinklype boundary conditions, ASME Pap. IJPGC2000-15004.
  • [2.179] Denton J.D., 1993, Loss mechanisms in turbomachines, Trans. ASME J. Turbomachinery, Vol. 115, pp. 621÷656.
  • [2.180] Lampart P., Gardzilewicz A., Yershov S., Rusanov A.,2001, Investigations of interactions of the main flow with root and tip leakage flows in an axial turbine stage by means of a source/sink approach for a 3D Navier-Stokes solver, J. Thermal Science, Vol. l0, No. 3, l98÷204.
  • [2.181] Lampart P., Gardzilewicz A',2000, Badanie przepĘwu z przeciekami w stopniu furbiny akcyjnej przy pomocy modelu 3D Źródło lupust, Cieplne Maszyny PrzepĘwowe, Vol. ll7, Tom l, str. 233÷238.
  • [2.182] G/Turbo, 2001, User's Guide, Fluent Inc.
  • [2.183] Heider R., Duboue J.M., Petot B., Couaillier V., Liamis N., Billonnet G., l993. Three dimensional analysis of turbine rotor flow including tip clearance, ASME Pap. 93-GT-l11.
  • [2.184] Fougeres J.M., Heider R., l994, Three-dimensional Navier-Stokes prediction of heat transfer with film cooling, ASME Pap. 94-GT-14.
  • [2.185] Kwon O.J., Hah Ch., 1993, Three-dimensional unstructured grid Euler method applied to turbine blades, AIAA Pap. 93-0196.
  • [2.186] Gambit, 2000, User's Guide, Fluent Inc.
  • [2.187] Mathur S.R., Madavan R.N., Rajagopalan R.G., l993, A hybrid structured-unstructured method for unsteady turbomachinery flow computations, AIAA Pap. 93-0387.
  • [2.188] Dawes B., 2003, Steady and Unsteady Computations of Fluid-Flow Machinery Blading, Materiały Szkoły Letniej Mechaniki Płynów, Olsztyn, 2517 września (CD-ROM).
  • [2.189] Dolejsi V., 200l, Numerical simulation of compressible flow through cascade of profiles,TASK Quart., Vol. 6, No. 1, pp.171:186.
  • [2.190] Eiseman P. 1985, Grid generation for fluid mechanics, Ann. Rev. Fluid Mech, Vol 17, pp. 487÷522.
  • [2.191] Knupp P., Steinberg S., 1993, Fundamentals of grid generation, CRC Press Inc.
  • [2.192] Thompson J.F., Soni B., Weatherhill N., l998, Handbook of grid generation, CRC Press Inc.
  • [2.193] Liseikin V., 1999, Grid generation methods, Springer-Verlag.
  • [2.194] Gregory-Smith D.G., Crossland S.C.,2001, Prediction of turbomachinery flow physics from CFD* review of recent computations of APPACET test cases, TASK Quart., Vol. 5, No. 4, pp. 407÷431.
  • [2.195] QNET-CFD Network Newsletter, 2001÷2004, Vol. l, No. 1÷4, Vol. 2, No. 1÷4.
  • [2.196] Gregory-Smith D., 1997, Turbomachinery workshop test case No. 3. Durham low-speed turbine cascade, Rep. School of Engineering, University of Durham.
  • [2.197] Arts T., Lamberr de Rouvroit M., Rutherford A.W., 1990, Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade, Rep. VKI TN 174.
  • [2.198] Walraevens R., Gallus H.E., l999, Test case 6: l1-l/2 Stage Axial Flow Turbine, Rep. Institute of Jet Propulsion and Turbomachinery, RWTH Aachen.
  • [2.199] Reid L., Moore R.D., l978, Design and overall performance of four highly-loaded high-speed inlet stages for an advanced high-pressure ratio corę compressor, NASA TP-l337.
  • [2.200] Hathaway M.D., Chriss R. M., Wood J.R., Strazisar A.J., 1993, Experimental and computational investigation of NASA low_speed centrifugal compressor flow field, Trans. ASME J. Turbomachinery, Vol. 115, pp. 527÷535.
  • [2.201] Yershov S., Rusanov A., Gardzilewicz A., Lampart P., 1997, Calculations of Test Case 3 – Dur-ham low speed turbine cascade, Proc. V ERCOFTAC Seminar and Workshop on 3D Turbomachinery Flow Prediction, Courchevel, France, January 6-9.
  • [2.202] Yershov S., Rusanov A., Gardzilewicz A., Badur J., Lampart P., 1997, Calculations of Test Case 9 - Highly loaded transonic linear turbine guide vane cascade, Proc. V ERCOFTAC Seminar and Workshop on 3D Turbomachinery Flow Prediction, Courchevel, France, January 6-9.
  • [2.203] Lampart P., Rusanov A., Yershov S., Gardzilewicz A., Badur L, 1999, Numerical simulation of unsteady flow in lYz stage axial flow turbine, Proc. VI ERCOFTAC Seminar and Workshop on 3D Turbomachinery Flow Prediction, Aussois, France, Ianuary 4-7.
  • [2.204] Yershov S., Rusanov A., Lampart P., Swirydczuk J., Gardzilewicz A.,2001, Simulation of turbomachinery flows using a 3D RANS solver with Menter SST turbulence model, Proc. 4th Seminar Euler & Navier-Stokes Equations, May 23-25, Prague, Czech Rep., pp. l45÷l48.
  • [2.205] Lampart P., Yershov S., Rusanov A.,2002, Validation of turbomachinery flow solver on turbomachinery test cases, Cieplne Maszyny Przepływowe, Vol. 122, pp. 63-70.
  • [2.206] Wiechowski S., l988, Wyniki badań palisad pierścieniowych TK8';TK9 i modeli stopni TK8-TW3, TK9-TW3, opr. Instytutu Techniki Cieplnej, Łódź, No. 54l3.
  • [2.207] Wiechowski S., 200l, Efekty zmiany ułopatkowania kierownicy akcyjnego stopnia turbinowego, Gospodarka Paliwami i Energią No.2, str.22÷29.
  • [2.208] Marcinkowski S., l998, Wyniki rozszerzonych badań cieplno-przepływowych części NP turbiny l8K370 w Elektrowni Bełchatów, opr. IMP PAN, Gdansk, No. 292198.
  • [2.209] Gardzilewicz A., Marcinkowski S., 1995, Diagnosis of LP steam turbines. Prospects of a measuring technique, ASME PWR Vol. 28, No. 3, pp. 349÷358.
  • [2.210] Krzyżanowski J., Marcinkowski S., l997, On efficiency measurements for large steam turbine LP stages. Proc. 2nd Europ. Conf. on Turbomachinery, March 5-7, Antwerpen, Belgium, pp.29-36.
  • [2.211] Gardzilewicz A., Łuniewicz B., Stojanov A., 1995, Streamline curyature calculation of flow through the steam turbines stages with diffusers, Cieplne Maszyny Przepływowe, Vol. l08, pp. 147÷156.
  • [2.212] Moore M.J., Jackson R., Wood N.B., Langford R.W., Walters P.T., Keeley K.R., 1979, A method of measuring stage efficiency in operational wet steam turbines, Proc. Inst. Mech. Engrs CI 79/79.
  • [2.213] Gardzilewicz A., 197l, Wykładnik izentropy pary wodnej w poblizu linii nasycenia, Trans. IFFM., Vol. 57, pp.3l÷44.
  • [2.214]Lampart P., Świrydczuk J., Gardzilewicz A., Yershov S., Rusanov ., 200l, The comparison of performance of the Menter shear stress transport and Baldwin-Lomax turbulence models with respect to CFD prediction of losses in HP axial turbine stages, ASME PVP, Vol. 424.1, pp. 135÷ 146.
  • Literatura do rozdziału 3
  • [3.1] Dejcz M.E., Samojłowicz G.S., l959, Osnowy aerodynamiki osiewych furbomaszin, MASZGIZ, Moskwa.
  • [3.2] Dejcz M.E., Filipow G.A., Lazarev L.J., 1965, Atlas profilej reszetok osiewych turbin, CEGB Trans. 4563, Moskwa.
  • [3.3] Trojanovski B.M., 1959, Obobszczonnyje grafiki ekonomicznosti odnowienicznych turbinnych stupieniej MEI, Tiepłoenergetika, 6, str. 29÷34.
  • [3.4] Ainley D.G., Mathieson G.C.R., 1951, An examination of the flow and pressure losses in blade rows of axial-flow turbines, ARC R&M Rep. 2891.
  • [3.5] Balje O.E., Binsley R.L., 1968, Axial turbine performance evaluation, Part A. Loss-geometry relationships, Part B. Optimisation with and without constraints, Trans ASME J. Engng Power, Vol. E, pp. 341÷348, 349÷360.
  • [3.6] Craig H.R.M., Cox H.J.A., 197l, Performance estimation of axial flow turbines, Proc. Inst. Mech. Engrs, Vol. 185 32/71, pp. 401-424.
  • [3.7] Aleksiejeva R.N., Bojcova E.A., 1973, Approximate method of calculation of the energy losses in the blade cascades, Teploenergetika, pp. 21÷25.
  • [3.8] Szczeglajew A.W., l976, Parowyje turbiny, Energija, Moskwa.
  • [3.9] Traupel W.,1977, Thermische Turbomaschinen, Band I, Springer-Verlag, Berlin.
  • [3.10] Gardzilewicz A., 1984, Komputerowe obliczenia obiegów cieplnych i turbin, Prace IMP PAN, No. 125/84.
  • [3.11] Perycz S., 1992, Turbiny parowe i gazowe, Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom l0, Wrocław-Warszawa-Kraków.
  • [3.12] Kosowski K., 1995, Dobór korzystnych wartości podstawowych parameterów projektowych stopni turbin cieplnych. Uogólniona metoda projektowania stopni turbinowych, Zeszyty Naukowe Politechniki Gdańskiej, Nr 528, Budownictwo okrętowe LXII.
  • [3.13] Gundlach W.R., l975,Maszyny przepływowe, część III, PWN, Warszawa.
  • [3.14] Chmielniak T., l989, Podstawy teorii profilów i palisad łopatkowych, Wyd. PAN, Zakład Narodowy Im. Ossolińskich, Seria Maszyny Przepływowe, Tom 4, Wrocław-Warszawa-Kraków-Gdańsk-Łódź.
  • [3.15] Puzyrewski R., 1992, Podstawy teorii maszyn wirnikowych w ujęciu jednowymiarowym, Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom 8, Wrocław-Warszawa-Kraków.
  • [3.16] Denton J.D., 1993, Loss mechanisms in turbomachines, Trans. ASME J. Turbomachinery, Vol. 115, pp. 621÷656.
  • [3.l7] Denton J.D., l999, Loss mechanisms in turbomachines, Part I Entropy creation in fluid flows, Part II Loss generation in turbomachines, VKI LS 1999-02.
  • [3.l8] Gregory-Smith D.G., 1997, Secondary and tip-clearance flows in axial turbines, VKI LS 1997-01 .
  • [3.19] Sjolander S.A., l997, Secondary and tip-clearance flows in axial turbines, VKI LS 1997-01.
  • [3.20] Elsner J.W., 1988, Aerodymanika palisad łopatkowych, Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom 3, Wrocław_Warszawa-Kraków-Gdańsk-Łódź.
  • [3.21] Gyarmathy G., 1962, Grundlagen einer Theorie der Nassdampfturbine, JurirVerlag, Zurich.
  • [3.22] Filippov G.A., Stekolszczikov E.W., Anisimowa M.P., 1996, Energeticzeskije charakteristiki potokow wlażnowo para i ich izmerenie pnewnometriczeskimi zondami, Iccledowanije potoka wlażnowo para w turbinnych stupieniach czasti niskowo dawlenija, Kotloturbostrojenie - Trudy CKTI Leningrad, No. 65, str. 38÷43.
  • [3.23] Moore J.E., Sieverding C.H., 1976, Two-phase steam flow in turbines and separators: theory, instrumentation, engineering, Hemisphere Publ. Corp., Washington.
  • [3.24] Pope S.B., 2000, Turbulent flows, Cambridge University Press.
  • [3.25] Schlichting H., Scholz N., 1951, Uber die theoretische Berechnung der Stroemungsverluste eines ebenen Schaufelgitters, Ing. Archiv, Bd. l9, Heft l, pp.42÷65.
  • [3.26] Stewart W.L., 1955, Analysis of two-dimensional compressible flow loss characteristics downstream of turbomachine blade rows in terms of basic boundary layer characteristics, NACA TN 3515.
  • [3.27] Lieblein S., Roudebush W.H., 1956, Theoretical loss relations for low-speed two-dimensional cascade flow, NACA TN 3662.
  • [3.28] Schlichting H., 1968, Boundary layer theory, McGraw-Hill, New York.
  • [3.29] Puzyrewski R., Sawicki J.,200l, Podstawy mechaniki płynów i hydrauliki, PWN, Warszawa.
  • [3.30] Denton J.D., Xu L., 1990, The trailing edge loss of transonic turbine blades, Trans. ASME J. Turbomachinery, Vol. 112, pp. 217-285.
  • [3.31] Bosschaerts W.R.M., Sieverding C., Arts T., 1987, Comparison of trvo explicit Euler solvers with hybrid approach to calculate transonic turbine cascade flows with embedded shocks, IMechE. Paper C284/87.
  • [3.32] Sieverding C.H., Stanislas M., Snoek J., 1983, The base pressure problem in transonic cascades, ASME Pap. 83-GT-50.
  • [3.33] Xu L, Denton J.D., 1988, The base pressure and loss of a family of four turbine blades, Trans. ASME J. Turbomachinery, Vol. 110, pp. 9÷17.
  • [3.34] Mee J.D., Baines N.C., Oldfield M.L.C., Dickens T.8., 1992, An examination of the contributions to loss on a transonic turbine blade in cascade, Trans. ASME J. Turbomcahinery, Vol. 114, pp. 155÷162.
  • [3.35] Prosnak w.J., 1971, Mechanika płynów, Tom II, Dynamika Gazów, PWN, Warszawa.
  • [3.36] Chmielniak T ., 1994, Przepływy transoniczne, Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom 1 6, Wrocław-Warszawa-Kraków.
  • [3.37] Abbiss J.B., East L.F., 1976, A study of the interaction of a normal shock wave and a turbulent boundary layer using a laser anemometer, RAE Rep. 75141.
  • [3.38] Kooi J.W., 1978, Influence of free-stream Mach number on transonic shock-wave boundary-layer interaction, NLR MP Rep. 78013 U.
  • [3.39] Doerffer P., 1990, oddziaływanie pomiędzy prostopadłą falą uderzeniową a turbulentną warstwą przyścienną zeszyty Naukowe IMP PAN, No. 309/1270/90.
  • [3.40] Doerffer P., Dallmann U., 1989, Reynolds number effect on separation structure of normal shock wave / turbulent boundary layer interaction, AIAA I.,Vol. 27, No. 9, pp. 1206:1212.
  • [3.41] Hawthome W.R., 195l, Secondary circulation in fluid flow, Proc. Roy. Soc. Ser. A, Vol. 206,pp. 374÷387.
  • l3.42] Puzyrewski R., 1963, Konwekcja linii wirowych w zakrzywionych kanałach jako podstawa do obliczania strat brzegowych, Trans. IFFM, Vol. l7, pp. 63-l08.
  • [3.43] Langston L.S., Nice M.L., Hooper R.M., 1977, Three dimensional flow within a turbine cascade passage, Trans. ASME, J. Eng. Power, Vol. 99, pp.2l÷28.
  • [3.44] Marchal Ph., Sieverding C.H., 1977, Secondary flows within turbomachinery bladings, Proc. AGARD-CP-24 Secondary Flows in Turbomachines, Pap. No. 1l.
  • [3.45] Hodson H. P., Dominy R.G., 1987, Three-dimensional flow in a low pressure turbine cascade at its design conditions, Trans. ASME, J. Turbomachinery, Vol. l09,pp.278-286.
  • [3.46] Eckerle W.A., Langston L.S., 1987, Horseshoe vortex formation around a cylinder, Trans. ASME J. Turbomachinery, Vol. 109, pp.278÷286.
  • [3.47] Langston L.S., 1980, Crossflows in a turbine cascade passage, Trans. ASME J. Eng. Power, Vol. 102, pp. 866÷874.
  • [3.48] Sharma O.P., Butler T.L., 1987, Prediction of endwall losses and secondary flows in axial flow turbine cascades, Trans. ASME J. Turbomachinery, Vol. 109, pp. 229-236.
  • [3.49] Goldstein R.J., Spores R.A., 1988, Turbulent hansport on the endwall in the region between adjacent turbine blades , Trans. ASME J. Heat Transfer, Vol. 1l0, pp. 862÷869.
  • [3.50] Doerffer P., Amecke J., 1994, Secondary flow control and stręam-wise vortices formation, ASME Pap.94-GT-376.
  • [3.51] Wang H.P, Olson S.J., Goldstein R.J., Eckert E.R.G., 1997, Flow visualisation of a linear turbine cascade of high performance turbine blades, Trans. ASME J. Turbomachinery, Vol. 119, pp. 1÷8.
  • [3.52] Sieverding, C.H., Van den Bosche P., 1983, The use of coloured smoke to visualise secondary flows in a turbine blade cascade, J. Fluid Mech., Vol. 134, pp. 85÷89.
  • [3.53] Moore J., Smith B.L., 1984, Flow in a turbine cascade: Part2- Measurements of flow trajectories by ethylene detection, Trans. ASME, J. Eng. Gas Turbines and Power, Vol. 106, pp. 409÷414.
  • [3.54] Sieverding C.H., 1985, Recent progress in understanding of basic aspects of secondary flows in turbine blade passages. Trans. ASME J. Eng. Gas Turbines and Power, Vol. 107, pp. 248-257 .
  • [3.55] Doerffer P., Rachwalski J., Magagnato F.,2001, Numerical investigation of the secondary flow development in turbine cascade, TASK Quart. Vol. 5, No. 2, pp. l65÷l78.
  • [3.56] Gregory-Smith D.G., Cleak J.G.E., 1992, Secondary flow measurements in a turbine cascade with high inlet turbulence, Trans. ASME J. Turbomachinery, Vol. 114, pp. 173÷183.
  • [3.57] Harrison S., 1989, Secondary loss generation in a linear cascade of high tuming turbine blades, Trans. ASME J. Turbomachinery, Vol. 111, pp. 618÷624.
  • [3.58] Yamamoto A., 1987, Production and development of secondary flows and losses in two types of straight turbine cascades: Part 1 - A stator case, Part. 2 - A rotor case, Trans. ASME J. Turbomachinery, Vol. 109, pp. 186-200.
  • [3.59] Lakshminarayana B., Horlock J.H., 1973, Generalised expressions for secondary vorticity using intrinsic co-ordinates, J. Fluid Mech., Vol. 59, Part I, pp. 97÷l 15.
  • [3.60] Horlock J.H., Lakshminarayana B., 1973, Secondary flows: theory, experiment, and application in turbomachinery aerodynamics, Ann. Rev. Fluid Mechanics, Vol. 5,pp.247-279.
  • [3.61] Hawthorne W. R., 1955, Rotational flow through cascades, Quart. J. Mech. Appl. Math., Vol. 8, Part 3, pp. 266÷279.
  • [3.62] Squire H.B., Winter K.G., l95l, The secondary flow in a cascade of aerofoils in a non-uniform stream, J. Aeronaut. Sci, Vol. l8,pp.27l÷277.
  • [3.63] Came P.M., Marsh H., 1974, Secondary flow in cacsades: two simple derivations for the components of vorticity, J. Mech. Engng Sci., Vol. l6, No. 6, pp. 391-407.
  • [3.64] Gregory-Smith D.G., 1982, Secondary flows and losses in axial flow turbines, Trans ASME J. Eng Gas Turbines and Power, Vol. 104, pp. 819÷822.
  • [3.65] Dunham J., Came P.M., 1970, Improvements to the Ainley-Mathieson method of turbine performance prediction, Trans ASME J. Eng. Power, Vol.92, No. 3, pp. 252÷260.
  • [3.66] Walsh J.A., Gregory-Smith G.D., l990, lnlet skew and the growth of secondary losses and vorticity in a turbine cascade, Trans. ASME J. Turbomachinery, Vol. 112,pp.633÷642.
  • [3.67] Gardzilewicz A., Lampart P., Świrydczuk J., Kosowski K., 2000, Badanie strat przepływowych w wieńcach łopatkowych stopni turbinowych z wykorzystaniem CFD, Część I. Metoda obliczeniowa, Cieplne Maszyny Przepływowe, Vol. ll7, Tom l , str. l79÷l 86.
  • [3.68] Gardzilewicz A., Lampart P., Świrydczuk J., Kosowski K., 200l, Primienienije czislennoj techniki CFD dla postrojenia aerodinamiczeskich charakteristik turbinnoj stupieni, Proc. Conf. – Sowierszenstwowanije turboustanowok metodami matematiczeskowo i fiziczęskowo modelirowania, Kharkov - Beloje Oziero, Ukraine, September 18-22.
  • [3.69] Gregory-Smith D., Graves C.P., Walsh J.A., 1988, Growth of secondary losses and vorticity in an axial turbine cascade, Trans. ASME J. Turbomachinery, Vol. 110, pp. l÷8.
  • [3.70] Lampart P., Gardzilewicz A., 1999, Numerical study of 3D blading in HP impulse turbines, Cieplne Maszyny Przepływowe, Vol. l l5, pp.297÷310.
  • [3.71] Gardzilewicz A., Marcinkowski S., 1995, Diagnosis of LP steam turbines. Prospects of a measuring technique, ASME PWR Vol. 28, No. 3, pp. 349÷358.
  • [3.72] Marcinkowski S., 1998, Wyniki rozszerzonych badań cieplno-przepływowych części NP turbiny l8K370 w Elektrowni Bełchatów, Opr. IMP PAN, Gdańsk, No. 292/98.
  • [3.73] Bindon J.P., 1987, The measuremet of tip clearance flow structure on the endwall and within the clearance gap of an axial turbine cascade, I.Mech.E. Paper,C273/87.
  • [3.74] Bindon J.P., 1989, The measurement and formation of tip clearance loss, Trans. ASME J. Turbomachinery, Vol. 111, pp. 257-263.
  • [3.75] Sjolander S.A., Amrud K.K., l987, Effects of tip clearance on blade loading in a planar cascade of turbine blading, Trans. ASME J. Turbomachinery, Vol. 109, pp. 237÷244.
  • [3.76] Sjolander S.A., Cao D., 1995, Measurements of the flow in an idealized turbine tiop gap, Trans. ASME J. Turbomachinery, Vol. 117, pp. 578÷584.
  • [3.77] Yaras M.I.,ZhuY, Sjolander S.A., l9S9,Flowfieldinthetipgapof a planar cascade of turbine blades, Trans. ASME J. Turbomachinery, Vol. 111 , pp. 276÷283.
  • [3.78] Graham J.A.H., l986, Investigation of a tip clearance cascade in a water analogy rig, Trans. ASME J. Engng Gas Turbines Power, Vol. 108, pp. 38-46.
  • [3.79] Xiao X., McCarter A.A., Lakshminarayana B., 2000, Tip clearance effects in a turbine rotor, Part I: Pressure field and loss, ASME Pap, 2000-GT-0476,Part II: Velocity field and flow physics, ASME Pap. 200VGT-0477.
  • [3.80] Moore J., Tilton J.S., 1988, Tip leakage flow in a linear turbine cascade, Trans. ASME J. Turbomachinery, Vol. 110, pp. 18÷26.
  • [3.81] Yaras M.I., Sjolander S.A., 1990, Development of the tip leakage flow in a planar cascade of turbine blades: Vorticity field, Trans. ASME J. Turbomachinery, Vol. ll2, pp. 609÷617 .
  • [3.82] Tallman J., Lakshminarayana B.,2000, Numerical simulation of tip leakage flows in axial flow turbines, with emphasis on flow physics, Part I: Effect of tip clearance height, ASME Pap. 200GGT-05 14, Part II: Effect of outer casing relative motion, ASME Pap. 2000-GT-0516.
  • [3.83] Yamamoto A., 1988, Interaction mechanisms between tip leakage flow and the passage vortex in a linear turbine rotor cascade, Trans. ASME J. Turbomachinery, Vol. 1 l0, pp. 329÷338.
  • [3.84] Yamamoto A., 1989, Endwall flow/loss mechanisms in a linear turbinę cascade with blade tip clearance, Trans. ASME J. Turbomachinery, Vol. I I l, pp. 264÷275.
  • [3.85] Yamamoto A., Matsyunuma T., Outa E.,2001, Three-dimensional f lows and losses in an ultra-172 highly loaded turbine, Rep. National Aerospace Lab., Tokyo, Japan.
  • [3.86] Chan J.K.K., Yaras M.I., Sjolander S.A., l994, Intęraction between inlet boundary layer, tip leakage and secondary flows in a low-speed turbine cascade, ASME Pap. 94-GT-250.
  • [3.87] Moore J.G., Schom S.A., Moore J., 1996, Methods of classical mechanics applied to turbulence stresses in a tip leakage vortex, Trans. ASME J. Turbomachinery, Vol. 118, pp. 622÷629.
  • [3.88] Heyes F.J.G., Hodson H.P., Dailey C.M.,1992, The effect of blade tip geometry on the tip leakage flow in axial turbine cascades, Trans. ASME J. Turbomachinery, Vol. 114, pp. 643÷651.
  • [3.89] Lampart P., Gardzilewicz A., Szymaniak M., Kurant B., Banaszkiewicz M., Malec A., 2003, Stator blade modification as a method of leakage flow treatment to improve the efficiency of old-design steam turbine stages, Trans. IFFM, Vol. 114, pp. l9÷36.
  • [3.90] Boletis E., Sieverding C.H., 1991, Experimental study of the three-dimensional flow field in a turbine stator proceded by a full stage, Trans. ASME J. Turbomachinęry, Vol. 113, pp. 1÷9.
  • [3.91] Morphis G., Bindon J.P., 1994, The performance of a low speed one and a half stage axial turbine with varlng rotor tip clearance and tip gap geometry, ASME Pap. 94-GT-48 l.
  • [3.92] Yaras M.I., Sjolander S.A., 1992, Prediction of tip-leakage losses in axial turbines, Trans. ASME J. Turbomachinery, Vol. 114, pp. 204÷210.
  • [3.93] Kacker S.C., Okapuu U., 1982, A mean line prediction method for axial flow turbine efficiency, Trans. ASME J. Engng Power, Vol. 104, pp. 111÷l19.
  • [3.94] Yaras M.I., SjolanderS.A., 1992,Effectsof simulatedrotationontipleakageinaplanarturbine cascade of turbine blades, Part I. Tip gap flow, Trans. ASME J. Turbomachinery, Vol. 114, pp. 652÷659.
  • [3.95] Dishart P.T., Moore J., 1990, Tip leakage losses in a linearturbine cascade, Trans. ASME J. Turbomachinery, Vol. 112, pp. 599-608.
  • [3.96] Kim B.N., Chung M.K., 1997, Improvement of tip leakage loss model for axial turbines, Trans. ASME J. Turbomachinery, Vol. 1 19, pp. 399÷401.
  • [3.97] Heyes F.J.G., Hodson H.P., 1993, Measurement and prediction of tip clearance flow in linear turbine cascades, Trans. ASME J. Turbomachinery, Vol. 115, pp. 373÷382.
  • [3.98] Yaras M.L, Sjolander S.A., King R.J., 1992, Effects of simulated rotation on tip leakage in a planar turbine cascade of turbine blades, Part II. Downstream flow field and blade loading, Trans. ASME J. Turbomachinery, Vol. 114, pp. 660÷667.
  • [3.99] Gier J., Stubert B., Brouillet B., de Vito L.,2}}3,Interaction of shroud leakage flow and main flow in a three-stage LP turbine, ASME Pap. GT2003-38025.
  • [3.100] Lampart P., Gardzilewicz A., Yershov S., Rusanov A.,2000, Investigation of flow characteristics of an HP turbine stage including the effect of tip leakage and windage flows using a 3D Navier-Stokes solver with source/sink-type boundary conditions, ASME Pap. IJPGC2000-15004.
  • [3.101] Lampart P., Gardzilewicz A., Yershov S., Rusanov A.,200l,Investigations of interactions of the main flow with root and tip leakage flows in an axial turbine stage by means of a source/sink approach for a 3D Navier-Stokes solver, J. Thermal Science, Vol. 10, No. 3, 198-204.
  • [3.102] Lampart P., Yershov S., Rusanov A., Szymaniak M.,2004, Tip leakage / main flow interactions in multi-stage HP turbines with short-height blading, ASME Pap. GT2004-53882.
  • [3.103] Peters P., Breisig V., Giboni A., Lerner C., Pfost H., 2000, The influence of the clearance of shrouded rotor blades on the development of the flowfield and losses in the subsequent stator, ASME Pap. 2000-GT-478.
  • [3.104] Gibboni A., Menter J.R., Peters P., Wolter K., Pfost H., Breisig V.,2003, Interaction of labyrinth seaf leakage flow and main flow in an axial turbine, ASME Pap. GTZ003-38722.
  • [3.105] Hodson H.P., Dawes W.N., 1998, On the interpretation of measured profile losses in unsteady wake - turbine blade interaction studies, Trans. ASME J. Turbomachinery, Vol. 120, pp. 276-284.
  • [3.l06] Binder A., l985, Turbulence production due to secondary vortex cutting in a furbine rotor, Trans. ASME J. Engng Gas Turbines Power, Vol. 107, pp. 1039÷1046.
  • [3.107] Johnson A.B., Oldfield M.L.G., Rigby M.J., Giles M.B., 1990, Nozzle guide vane shock wave propagation and bifurcation in a transonic turbine rotor, ASME pap. 90-GT-3 10.
  • [3.108] Sieverding C.H., Heinemann H., 1990, The influence of boundary layer state on vortex shedding from flat plates and turbine cascades, Trans. ASME J. Turbomachinery, Vol. 1l2,pp. 18l÷187.
  • [3.109] Cicatelli G., Sieverding C.H., 1997, The effect of vortex shedding on the unsteady pressure distribution around the trailing edge of the turbine blade, Trans. ASME J. Turbomachinery, Vol. ll9, pp.810÷818.
  • [3.110] Cunie T.C., Carscallen W.E., 1998, Simulation of trailing edge vortex shedding in a transonic turbine cascade, ASME J. Turbomachinery, Vol. 120, pp. l0÷19.
  • [3.111] Sondak D.L., Dorney D.J., 1999, Simulation of vortex shedding in a turbine stage, ASME J. Turbomachinery, Vol. 12l, pp. 428=435.
  • [3.112] Zaccatia M.A., Lakshminarayana 8., 1997, Unsteady flow field due to nozzle wake interaction with the rotor in an axial flow turbine: Part I - Rotor passage flow field, Part II - Rotor exit flow field, Trans. ASME J. Turbomachinery, Vol. 119, pp. 201÷224.
  • [3.113] HodsonH.P., l985,Measurementsof wake-generated unsteadiness in the rotor passages of axial flow turbines, Trans. ASME J. Engag Gas Turbines Power, Vol. 107, pp. 467÷476.
  • [3.114] Stieger R.D., Hodson H.P., 2005, The unsteady development of a turbulent wake through a downstream LP turbine blade passage, Trans. ASME J. Turbomachinery, Vol. l27,pp.388÷394.
  • [3.115] Adamczyk J.J, Celestina M.L., Chen J.P, 1999, Wake-induced unsteady flows: Their impact on rotor performance and wake rectification, Trans. ASME J. Turbomachinery, Vol. 118, pp. 88-95.
  • [3.116] Fan S., Lakshminarayana B., l996, Time-accurate Euler simulation of interaction of nozzle wake and secondary flow with rotor blade in an axial turbine stage using nonreflecting boundary conditions, Trans. ASME J. Turbomachinery, Vol. 118, pp. 663÷679.
  • [3.117] Świrydczuk J.,2002, Vortex dynamics of the stator wake - rotor cascade interaction, Trans. ASME J. Fluids Engineering, Vol. l24,pp.400÷412.
  • [3.118] Meyer R.X., 1958, The effect of wakes on the transition pressure and velocity distribution in turbomachines, Trans. ASME J. Basic Engng, Vol. 80, pp. 1544-1552.
  • [3.119] Kenebrock J.L., Mikolajczak A.A., 1970, Intra-stator hansport of rotor wakes and its effect on compressor performance, Trans. ASME J. Engng Power, Vol. 92, pp.359÷369.
  • [3.120] Wierciński Z., 1999,Przejście laminarno-turbulentne w warstwie przyściennej indukowane śladami spływowymi, Zeszyty Naukowe IMP PAN, No. 499/1450/99.
  • [3.121] Addison J.S., Hodson H.P., l990, Unsteady transition in an axial-flow turbine: Part 1 – Measurements on the turbine rotor, Part 2 - Cascade measurements and modelling, Trans. ASME J. Turbomachinery, Vol. 112, pp.206÷221 .
  • [3.123] Mayle R.E., Dullenkopf K., 1989, A theory for wake-induced transition, Trans. ASME J. Turbomachinery,Vol. 111, pp. 188-195.
  • [3.123] Mayle R.8., 1991, The role of laminar-turbulent transition in gas turbine engines, Trans. ASME J. Turbomachinery, Vol. 113, pp. 509÷537.
  • [3.124] Elsner W., Vilmin S., Drobniak S., Piotrowski W.,2004, Experimental analysis of wake-induced transition in turbomachinery, ASME Pap. GT2OO4-53757.
  • [3.125] Hodson H.P., 1990, Modelling unsteady transition and its effects on profile loss, Trans. ASME J. Turbomachinery, Vol. 112, pp. 691÷701.
  • [3.126] Schulte V., Hodson H.P., 1998, Unsteady wake-induced boundary layer transition in high lift LP turbines, Trans. ASME J. Turbomachinery, Vol. 120, pp. 28÷35.
  • [3.127] Bohn D., Ren J., Sell M., 2005, lnfluence of stator clocking on the unsteady three-dimensional flow in a two-stage turbine, Trans. ASME J. Turbomachinery, Vol. 127, No. l, pp. 156-163.
  • [3.128] Krysiński J.E.,Smolny A.,BlaszczakJ.R.,2005,Stator clocking effects on 3D flow in a two-stage low-pressure turbine, ASME Pap. GT2005-68811.
  • [3 129] Yamamoto A., Murao R., Suzuki Y., Aoi Y., 1995, A quasi-unsteady study on wake interaction of turbine stator and rotor cascades, Trans. ASME J. Turbomachinery, Vol. 117, pp. 553÷56l .
  • [3.130] Gallus H.E., Zeschky J., Hah C., 1996, Endwall and unsteady flow phenomena in an axial turbine stage, 117, pp. 562÷570.
  • [3.131] Stephan B., Gallus H., Niehuis R.,2000, Experimental investigation of tip clearance flow and its influence on secondary flows in a 1-1/2 stage axial turbine, ASME Pap. 2000-GT-6l3.
  • [3.132] Sharma O.P., Pickett G'F., Ni R.H., 1992, Assesment of unsteady flows in turbines, Trans. ASME J. Turbomachinery, Vol. 114, pp. 79÷90.
  • [3.133] Jung A.R., Mayer J.F., Stetter H., l997, Unsteady blade loads caused by stator/rotor interaction in an axial turbine stage, Proc. Int. Conf. Modelling and Design in Fluid-Flow Machinery, Gdańsk, Poland, October 18-21.
  • [3.134] Lampart P., Rusanov A., Yershov S., Świrydczuk J., Gardzilewicz A., l999,Preliminary investigations of the effect of stator-rotor interaction on the characteristics of an Hp turbine stage, Cieplne Maszyny Przepływowe, Vol. 115, pp.285-296.
  • [3.135] Lampart P.,Rusanov A.,Yershov S.,Gardzilewicz A.,Badur J., l999, Numerical simulation of unsteady flow in 1 1/2 stage axial flow turbine, Proc. VI ERCOFTAC Seminar and Workshop on 3D Turbomachinery Flow prediction, Aussois, France, Jnnary 4-7.
  • Literatura do rozdziału 4
  • [4.1] Singh G., Walker P.J., Haller B.R., l995, Development of three-dimensional stage viscous time marching method for optimisation of short height stages, Proc. Europ. Conf. on Turbomachinery, , Fluid Dynamics and Thermodynamic Aspects, Erlangen, March l-3.
  • [4.2] Weiss A., l998, Advanced low pressure steam turbines, Proc. POWER-GEN EUROPE' Milano, Italy, June 9-l1, pp. 185÷195.
  • [4.3] Gerdes R., 2003, Trends in steam turbines development, Proc. Conf. Turbines of Large output, September 2214, Gdańsk, Poland.
  • [4.4] Tanuma T., Nagao S., Sakamoto T., Kawasaki S., 1995, Aerodynamic development of advanced steam turbine blades, ASME PWR, Vol. 28, No. 3, pp.367÷74.
  • [4.5] Simon V., Oeynhausen H., 1998, 3DV three-dimenstional blades - a new generation of steam turbine blading, ASME PWR, Vol. 33, No. 2, pp. 71÷78.
  • [4.6] Wakeley G., 1998, Steam turbine upgrades: a utility based approach, Proc. POWER-GEN EUROPE, Milano, Italy, June 9-11, pp. 377÷390.
  • [4.7] Harrison S., 1992, The influence of blade lean on turbine losses, Trans. ASME J. Turbomachinery, Vol. 114, pp. 184-190.
  • [4.8] Denton J.D., Xu L, 1999, The exploitation of 3D flow in turbomachinery design, VKI LS 1999-02.
  • [4.9] Lampart P., Gardzilewicz A., 1999, Numerical study of 3D blading in HP impulse turbines, Cieplne Maszyny Przepływowe (Turbomachinery), Vol. ll5, pp. 297÷310.
  • [4.10] Chen N.X., Xu Y.J., Huang W.G., 2000, Straight-leaned blade aerodynamics of a turbine nozzle blade row with low span-diameter ratio, J. Thermal Sciences, Vol. 9, No. I, pp. 5l-62.
  • [4.11] Filippov G.A., Wang Z.Q., l964, Wpływ skręcenia przepływu na charakterystyki wieńców kierowniczych, Teploenergetika No. 5, pp. 54÷57 (w jęz. rosyjskim).
  • [4.12] Deich M.E., Gubarev A.B., Filippov G.A., Wang Z.Q, 1962, Nowa metoda profilowania aparatów kierowniczych stopni turbinowych o małym stosunku średnicy do wysokości łopatek. Teploenergetika, No. 8, pp. 42÷46(w jęz. rosyjskim).
  • [4.13] Han W.J, Wang Z.Q., Xu W.Y., 1988, An experimental investigation into the influence of blade leaning on the losses downstream of annular cascades with a small diameter-height ratio, ASME Pap.88-GT-19.
  • [4.14] Han W.J., Wang Z.Q,, Tan C.Q., Shi H., Zhou M., 1994, Effects of leaning and curving of blades with high turning angles on the characteristics of turbine rectangular cascades, Trans. ASME J. Turbomachinery, Vol.l16, pp. 417÷424.
  • [4.15] Bagshaw D.A., Ingram G.L., Gregory-Smith D.G., Stokes M.R.,2005, An experimental study of reverse compund lean in a linear turbine cascade, Proc. 6th Europ. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, March 7-ll, Lille, France, pp. 199÷209.
  • [4.16] Lampart P., Gardzilewicz A., Rusanov A., Yershov S., 1999, Radial lean and compound lean of stator blades as means of improving flow characteristics of HP turbine stages, Proc. 4th ISAIF, Dresden, Germany, August 31 - September 2, Vol. II, pp. 42-51.
  • [4.17] Lampart P., Gardzilewicz A., Rusanov A., Yershov S., l999, The effect of stator blade compound lean and twist on flow characteristics of a turbine stage - numerical study based on 3D NS simulations, ASME PVP, Vol. 391.2, pp. 195÷204.
  • [4.18] Shi J., Han J.S., Zhou S., Zhu M., Zhutg Y., She M., 1986, An investigation of highly loaded transonic turbine stage with compound lean vanes, Trans. ASME J. Engng Gas Turbines Power, Vol.l08, pp.265-269.
  • [4.19] Wang Z.Q., 1999, Three-dimensional theory and design method of bowed-twisted blade and its application to furbomachines, VKI-LS 1999-02.
  • [4.20] Potts I., 1987, The importance of Sl stream surface twist in the analysis of inviscid flow through swept linear turbine cascades, I.Mech.E. Paper C258/87.
  • [4.21] Wadia A.R., Szucs P.N., Crall D.W., 1998, Inner working of aerodynamic sweep, Trans. ASME J. Turbomachinery, Vol, 120, pp. 67 l÷682.
  • [4.22] Sasaki T., Breugelmans F.A.E., 1998, Comparison of sweep and dihedral effects on compressor cascade performance, Trans. ASME J. Turbomachinery, Vol. l20, pp.454-464.
  • [4.23] Haller B.R., 1990, Improvements in the aerodynamics of large steam turbine, I.Mech.E. Pap. C386/0l7.
  • [4.24] Haller B.R., Hesketh J.A., 1993, Large steam turbine retroffiting to improve performance, Proc. POWER-GEN EUROPE'93, 2517 May, Paris, France, pp. 175-196.
  • [4.25] Gniesin V.I., Yershov S.V., Rusanov A.V., GardzilEwicz A., l996, Investigation of flow through turbine stages with compound leaned blading by means of 3D viscous and inviscid flow models, 3rd Int. Symp. on Aerothermodynamics of Internal Flows, September l-6, Bejing, China pp. 213÷220.
  • [4.26] Lampart p., 2000, Control of LP turbine rotor bladE underloading using stator blade compound lean at root, J. Thermal SciencEs, Vol. 9, No. 2, pp.ll5÷l2l.
  • [4.27] Lampart P., 2000, The application of stator blade compound lean at root to increase the efftciency of LP turbine stages from low to nominal load, ASME Paper IJPGC2000-15015.
  • [4.28] Lampart P., 2000, Kształtowanie szablowe przy stopie łopatek kierowniczych w stopniu wylotowym dużej mocy, Cieplne Maszyny Przepływowe No. l l7, Tom. I, str. 225÷232.
  • [4.29] Demeulenaere A., Van Den Braembussche R., 1998, Three-dimensional inverse method for turbomachinery blading design. Trans. ASME J. Turbomachinery, Vol. 120, pp. 247÷254.
  • [4.30] Van den Braembussche R., 2001, Turbomachinery component design by means of CFD, TASK Quarterly, Vol. 6, No. I, pp. 39÷61.
  • [4.31] Damle S., Dang T., Stringham J., Razinsky E., 1998, Practical use of 3D inverse method for compressor blade design. ASME Pap. 98-GT-l15.
  • [4.32] Dulikravich G.S., Baker D.P., l999, Aerodynamic shape inverse design using a Fourier series method, AIAA Pap. 99-0185.
  • [4.33] Tiow W.T., Zangeneh M., 2000, A three_dimensional viscous transonic inverse design method, ASME Pap. 2000-GT-O525
  • [4.34] Zffieeneh M., Goto A., Harada., 1999, On the role of three-dimensional inverse design methods in turbomachinery shape optimisation, Proc. Inst. Mech Engrs, Part C., J. Mechanical Engineering Science, Vol. 213, No. 1,pp.27÷42.
  • [4.35] Ashihara K., Goto A., 1999, Improvements of pump suction performance using 3D inverse design method, ASME Pap. FEDSM99-6846.
  • [4.36] Lee S.Y., Kim K.Y., 2000, Design optimisation of axial flow compressor blades with threedimensional Navier-Stokes solver. AMSE Pap. 2000-GT-0488.
  • [4.37] Eisinger R., Ruprecht A.' 200l, Automatic shape optimisation of hydro turbine components based on CFD, TASK Quarterly, Vol. 6, No. 1, pp. 101-11l.
  • [4.38] Yershov S., Rusanov A., Shapochka A., Lampart ., Świrydczuk J., Gardzilewicz A., 2002, Shape optimisation of two turbine stages using the deformed polyhedron method and a 3D RANS solver, Proc. Inst. Mech. Engrs, Part A., J. Power Energy, Vol.216, No. 2, pp. 203÷213.
  • [4.39] Lampart P., Yershov S.,2002,3D shape optimisation of turbomachinery blading, TASK Quarterly, Vol. 6, No. 1, pp. 1l3÷125.
  • [4.40] Lampart P., Yershov S., 2003, Direct constrained CFD-based optimisation of 3D blading for the exit stage of a large power stęam turbine, Trans. AMSE J. Eng Gas Turbines Power, Vol. l25, No. 1, pp.385-390.
  • [4.41] Benini E., 2003, Design of centrifugal compressor impellers for maximum pressure ration and maximum efficiency, Proc. 5th Europ. Conf. on Turbomachinery, Prague, Czech Rep., March l7-22,pp.641-651.
  • [4.42] Manna M., Tuccillo R., 2002, Improving the aero-thermal characteristics of furbomachinery cascades, ASME Pap. GT2002-30596.
  • [4.43] Burguburu S., Toussaint C., Bonhomme C., Leroy G., 2003, Numerical optimisation of turbomachinery bladings, ASME Pap. GT2003-38310.
  • [4.44] Pienet S., Van Den Braembussche R., l998, Turbomachinery blade design using a Navier-Stokes solver and artificial neural network. ASME Pap. 98-GT-4.
  • [4.45] Pierret S., 1999, Three-dimensional blade design by means of an artificial neural network and Navier-Stokes solver, VKI LS 1999-02.
  • [4.46] Pazzi S., Martelli F., Michelassi V., Giachi M., Van den Berghen -F., Bersini H., 2003, Intelligent performance CFD optimisation of a centrifugal impeller, Proc. 5th Europ. Conf. on Turbomachinery, Prague, Czech Rep., March 17-22, pp. 653÷664.
  • [4.47] Rosenbrock H.H., 1960, An automatic method for finding the greatest or least value of a function, Computer Journal, Vol. 4, pp. 175÷184.
  • [4.48] Hooke R., Jeeves T.A., 1961, Direct search solution of numerical and statistical problems, J. Assoc. Computing Machinery, Vol. 8, No. 2, pp. 212÷229.
  • [4.49] Spendley W., Hext G.R., Himsworth F.R., l962, Sequential application of simplex designs in optimization and evolutionary operation, Technometrics, Vol. 4, pp. 44l-449.
  • [4.50] Nelder J.A., Męad R., l965, A simplex method for function minimisation. Computer Joumal, Vol. 7, No. l, pp.308-313.
  • [4.51] Findeisen W., Szymanowski J., Wierzbicki A., l980, Teoria imętody obliczeniowe optymalizacji' PWN, Warszawa.
  • [4.52] Vanderplaats G.N., 1984, Numerical optimisation techniques for engineering design with applications, McGraw-Hill Book Company.
  • [4.53] Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., Teller E., 1953, Equations of state calculations by fast computing machines, J. Chemical Physics, Vol. 21, pp. 1087÷1092.
  • [4.54] Kirkpatrick S., Gelatt C., Vecchi M., l983, optimization by simulated annealing, Science, No. 4598.
  • [4.55] Glover F., 1989,1990, Tabu search: Part 1, ORSA Journal on Computing, Vol. l, No. 3, 190÷206, Part II, ORSA Journal on Computing, Vol. 2, No. 1, pp. 4÷32.
  • [4.56] Hu N., 1992, Tabu search method with random moves for globally optimal design, Int. J. Numerical Methods in Engineering, Vol. 35, pp. 1055÷1070.
  • [4.57] Goldberg D.E., l995, Algorytmy genetyczne i ich zastosowania WNT, Warszawa.
  • [4.58] Michalewicz Z., 1996, Algorytmy genetyczne ÷ struktury danych: programy ewolucyjne, WNT, Warszawa.
  • [4.59] Dorigo M., Stutzle T.,2004, Ant colony optimisation, MIT Press, Cambridge MA, USA.
  • [4.60] Al-Sultan K.S., Al-Fawzan M.A., 1997, A tabu search Hooke and Jeeves algorithm for unconstrained optimization, Europ. J. operational Research, Vol. l03, pp. 198÷208.
  • [4.61] Hedar A., Fukushima M., 2002, Hybrid simulated annealing and direct search method for nonlinear unconstrained global optimization, optimization Methods and Software, Vol. l7, pp. 89l÷9l2.
  • [4.62] Hedar A., Fukushima M., 2003, Minimizing multimodal functions by simplex coding genetic algorithm, optimization Methods and Software, Vol. 18, pp.265÷282.
  • [4.63] Chelouah R., Siarry P., 2003, Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions, Europ. J. Operational Research, Vol. 148, pp. 335÷348.
  • [4.64] Chelouah R., Siarry P., 2005, A hybrid method combining continuous tabu search and Nelder- Mead Simplex algorithms for the global optimization of multiminima functions, Europ. J. Operational Research, Vol. 16l, pp.636÷654.
  • [4.65] Shahpar S., 2000, A comparative study of optimisation methods for aerodynamic design of turbomachinery blades, ASME Pap., 2000-GT-523.
  • [4.66] Cardamone P., Pfitzner M., Loetzerich M., 2005, Aerodynamic optimisation of a HP furbine cascade blader for heavy duty gas turbine applications, Proc. 6th Europ. Conf. on Turbomachinery, Lille, France, March 7-11, pp. l89÷l98.
  • [4.67] Yershov S., Shapochka A., Rusanov A., 2000, 3D shaping of turbine blading based on 3D solutions of viscous compressible flow and optimisation, Proc. Conf. Improvements in turbomachinery using methods of mathematical and physical modelling, Kharkov-Zmiev, Ukraine, September l8-22,pp. 17l÷178 (in Russian).
  • [4.68] Lampart P., 2002, optymalizacja sprawnościowa kształtu przestrzennego ołopatkowania turbin parowych przy pomocy CFD, Proc. XV Krajowej Konferencji Mechaniki Płynów (CD RoM), Augustów, 23 16 września.
  • [4.69] Lampart P., 2004, Numerical optimisation of a high-pressure steam turbine stage, J. Computational and Applied Mechanics, Vol. 5, No. 2, pp. 3ll÷321.
  • [4.70] Lampart P., Yershov S., Rusanov A., 2005, Increasing flow efficiency of high-pressure and lowpressure steam turbine stages from numerical optimisation of 3D blading, Engineering Optimisation, Vol. 37, No. 2, pp. 145÷166.
  • [4.71] Lampart P.,2002, Numerical optimisation of stator blade sweep and lean in an LP turbine stage, ASME Pap. IPGC2002-26161.
  • [4.72] Lampart P., Gardzilewicz A.,200l,2002, Modernizacja ołopatkowania wylotu LP 560 poprzez optymalizację kształtu łopatek kierowniczych, Etap I-II. optymalizacja stopnia przedostatniego i wylotowego. obliczenia weryfikacyjne wylotu, opr. Diagnostyka Maszyn 24/0l, 07/02 (dla Alstom Power).
  • [4.73] Lampart P., Gardzilewicz A., Kietliński K., obrzut D., Wemer R., 2002, optimisation of turbine blading systems with the help of CFD, Proc. l6th Arbeitsgemeinschaft Turbomaschinery, Dresden, Germany, September 30 - October 2.
  • [4.74] Lampart P., 2003, Numerical optimisation of 3D blading in the LP exit stage of a steam turbine for different load conditions, Proc. 5th Europ. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, March 17-22, Prague, Czech Rep., pp.77l÷782.
  • [4.75] Demeulenaere A., Ligout A., Hirsch C.,2004, Application of multipoint optimization to the design of turbomachinery blades, ASME Pap. GT2004-531100.
  • Literatura do rozdziału 5
  • [5.1] Perycz S., l992, Turbiny parowe i gazowe, Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom l0, Wrocław-Warszawa-Kraków.
  • [5.2l Kosowski K., l995, Dobór korzystnych wartości podstawowych parametrów projektowych stopni turbin cieplnych. Uogólniona metoda projektowania stopni turbinowych, Zeszyty Naukowe Politechniki Gdańskiej, Nr 528, Budownictwo okrętowe LXII.
  • [5.3] BayleyF.J.,Long C.A., 1993,Acombinedexperimentalandtheoretical study of flow and pressure distribution in a brush seal, Trans. ASME J. Eng. Gas Turbines Power, Vol. I 15, No. 2, pp. 404÷410.
  • [5.4] Stephen D., Hogg S.,2003, Development of brush seal technology for steam retrofit applications, ASME Pap. IJPGC 2003-40103.
  • [5.5] Braun M.J., Kudriavtsev V.V., 1995, A numerical simulation of a brush seal section and some experimental results, Trans. ASME, J. Turbomachinery, Vol. ll7 , pp. 190-202.
  • [5.6] Soto E.A., Childs D.W., 1999, Experimental Rotordynamic Coefficient Results for (a) a Labyrinth Seal With and Without Shunt Injection and (b) a Honeycomb Seal, Trans. ASME J. Eng. Gas Turbines Power, Vol. 12l, No. l, pp. 153÷159.
  • [5.7] Allcock D., Ivey P., Tumer J.,2002, Abradable Stator Gas Turbine Labyrinth Seals: Part I Experimental Determination and CFD Modeling of Effective Friction Factors for Honeycomb Materials, AIAA Pap., ALAA-2002-3936.
  • [5.8] Chupp R.E., Ghasripoor F., Moore G.D., Kalv L.S., Johnston J.R., 2002, Applying abradable seals to industrial gas turbines, AIAA Pap., AIAA-2002-3795.
  • [5.9] Wallis A.M., Denton J.D., Demargne A.A.J., 2000, The control of shroud leakage flows to reduce aerodynamic losses in a low aspect ratio shrouded axial flow turbine, ASME Paper 200rcT-475.
  • [5.10] Gardzilewicz A., Marcinkowski S., l995, Stopień turbiny parowej przed upustim, Patent 276424, Warszawa.
  • [5.11] Gardzilewicz A., Karcz M., Marcinkowski S., Bielecki M., Badur J., Malec A., Banaszkiewicz M., 2002, Proposal of modernisation of a steam turbine stage before extraction, CFD and CSD analysis, TASK Quarterly, Vol. 6, No 4, pp. 577-589.
  • [5.12] Gardzilewicz A., l996, Stopień turbiny parowej, Patent 3 l8 027, Warszawa.
  • [5.13] Zariarlkin A, Gardzilewicz A., l997, Losses reduction possibilities for turbine stages with short blades, Proc. 2nd Europ. Conf. on Turbomachinery, Antwerpen, Belgium, March 5-7, PP. 225÷230.
  • [5.14] Lampart P., Gardzilewicz A., Szymaniak M., Kurant B., BanaszkiewiczM., Malec A., 2003, Stator blade modification as a method of leakage flow treatment to improve the efficiency of olddesign steam turbine stages, Trans. IFFM, Vol. l l4, pp. l9÷36.
  • [5.15] Lampart P., Yershov S., Rusanov A., Szymaniak M., 2004, Tip leakage / main flow interactions in multi-stage HP turbines with short-height blading, ASME pap. GT2004-53882.
  • [5.16] Dejcz M.E., Zariankin A.E., Filippov G.A., Zatsepin M.F., l960, Metody podwyższenia sprawności stopni turbin z krótkimi łopatkami, Teploenergetika, No. 2, pp. l8÷24 (w jęz. rosyjskim).
  • [5.17] Tajc L., Bednar L., l999, Turbine stage with meridional end-wall forming, Proc. Colloquium Fluid Dynamics'99, Prague, Czech Rep., October l8-19, pp. 205÷212.
  • [5.18] Denton J.D., Xu L., 1999, The exploitation of 3D flow in turbomachinery design, VKI LS 1999-02.
  • [5.19] Hartland J., Gregory-Smith D., 2002, A design method for the profiling of end walls in turbines, ASME Pap. GT2002-30433.
  • [5.20] Hartland J., Gregory-Smith D.G., Harvey N.W., Rose M.G., 2000, Non-axisymmetric end wall design. Part II. Experimental validation, Trans. ASME J. Turbomachinery, Vol, 122,pp.286-293.
  • [5.21] Harvey N.W., Rose M.G., Shahpar S., Taylor M.D., Hartland J., Gregory-smith D.c.; 2000, Nonaxisymmetric end wall design, Part I. Three-dimensional design system, Trans. ASME J. Turbomachinery, Vol. 122, pp.218-285.
  • [5.22] Ingram G., Gregory-Smith D.G., Rose M., Harvey N., Brennan G., 2003, The effect of end-wall profiling on secondary flow and loss development in a turbine cascade, ASME pap. GT2002-30339.
  • [5.23] Yermashov H., Marchenko U., 1976, Badania aerodynamiczne części niskociśnieniowych turbin, Prace Instytutu Maszyn Przepływowych PAN, Vol. 70-72, pp. 8l÷l00 (w jęz. rosyjskim).
  • [5.24] Lampart P., Gardzilęwicz A., Kwidziński R., 2000, On the control of flow losses in LP turbine stages - computation of advanced designs based on a solver of 3D Navier-Stokes equations, Proc. Seminar Topical Problems of Fluid Mechanics'2000, Prague, Czech Rep., February l6, pp. 53÷56.
  • Literatura do rozdziału 6
  • [6.1] Dejcz M.E., Trojanovskij B.M., l964, Badania i obliczenia stopni turbin osiowych turbin, Maszinostrojenie, Moskwa (w jęz. rosyjskim).
  • [6.2] Budyka I., Bułanin W., Kantos S., Rodin K., l959, Atlas konstrukcji parowych i gazowych turbin, Gazenergoizdat, Moskwa (w jęz. rosyjskim).
  • [6.3] Dejcz M.,E., Filippov G.A., Lazarev L.Ja., 1965, Atlas profili palisad turbin osiowych, Maszinostrojenie, Moskwa (w jęz. rosyjskim).
  • [6.4] Puzyrewski R., l978, Palisada kierownicza do regulacji natężenia przepływu w turbinie cieplnej, Urząd Patentowy PRL, Nr 9698l, l978-07-05.
  • [6.5] Puzyrewski R., Malec A., .Gardzilewicz A., 1994, Redesign of adaptive stage for 25 MW cogeneration turbine, Proc. 10th Conf. Steam and Gas Turbines for Power and Cogeneration Plants, Karlovy Vary, Czech Rep., October l8-20.
  • [6.6] Perycz S., 1992, Turbiny parowe i gazowe, Wyd. PAN, Seria Maszyny Przepływowe, Tom l0, Wrocław-Warszawa-Kraków, Zakład Narodowy im. Ossolińskich.
  • [6.7] Lampart P., Gardzilewicz A., 1999, Numerical analysis of flow through the last stage of a steam turbine using a high-resolution ENO scheme and implicit step for Navier-Stokes equations, Proc. Colloquium Fluid Dynamics'99, Prague, Czech Rep., October l8-19, pp. l3l÷138.
  • [6.8] Lampart P., Puzyrewski R., Gardzilewicz A.,2004, Zastosowanie modelu RANS do oceny regulacji adaptacyjnej części niskoprężnej turbin, Proc. Krajowej Konferencji Mechaniki Płynów, Waplewo,23-26 września (CD ROM).
  • [6.9] Lampart P., Puzyrewski R., 2004, Advantages of adaptive control in LP turbines, Proc. Conf. COM-POWER, December 2-3, Gdańsk, Poland, in: Technical Economic and Environmental Aspects of Combined Cycle Power Plants, ed. Z. Domachowski, Gdansk University of Technology, pp.25l÷259.
  • [6.10] Lampart P., Puzyrewski R., 2005, Numerical analysis of adaptive control in LP turbines, TASK Quarterly, Vol. 9, No. 2, pp.2ll÷234.
  • Literatura do rozdziału 7
  • [7.1] Perycz S., l992, Turbiny parowe i gazowe, Wyd. PAN, Zakład Narodowy im. Ossolińskich, Seria Maszyny Przepływowe, Tom l 0, Wrocław-Warszawa-Kraków.
  • [7 2] Kohl R., Herzig H., Whitney W., 1949, Effects of partial admission on performance of a gas turbine, NACA TN No. 1807.
  • [7.3] Jach T., Nemec B., 1989, Badania modelu stopnia regulacyjnego turbiny l3K2t5, Opr. Instytutu Techniki Cieplnej w Łodzi, Nr 5575.
  • [7.4] Domachowski Z.,2000, Partial Loading optimal Control as Steam Turbine Efficiency Improvement, ASME Pap. IJPGC2000-15014.
  • [7.5] Jesionek K.,2001, Method of increasing steam turbine control stage efficiency, J. Computational Applied Mechanics, Vol. 2, No. l,pp.37-43.
  • [7.6] Material Integrity Solutions Inc. Project Bulletin, 2001, Failure Risk Evaluation of a Turbine Rotor's Control Stage.
  • [7.7] ASME Mechanical Engineering News, 1997, Refurbishing steam turbines.
  • [7.8] Wakeley G, Potts 1., 1996, Unsteady flow phenomena in partially-admitted steam turbine control stages. Proc Aerodynamics of Turbomachinery, IMechE Paper S461.
  • [7.9] Wakeley G, Potts I., 1997, Origins of loss in a multistage turbine environment under conditions of partial admission, ASME Pap. 97-GT-96.
  • [7.10] He L., 1997 , Computation of unsteady flow through steam turbine blade rows at partial admission, Proc. Inst. Mech. Engrs., Part A, J. Power and Energy, Vol. 2ll, l97÷205.
  • [7.11] Skopek J.,Vomela J.,Tajc L.,Polansky J., 1999,Partial admission in an axialturbine stage,Proc. 3rd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, London, UK, March 2-5,1999, pp. 68l÷69l.
  • [7.12] Boulbin F., Penneron N., Kermarec J., Pluviose M., 1992, Turbine blade forces due to partial admission, Revue Francaise de Mechanique, No. 1992-93,pp. 203-208.
  • [7.13] Błażko E., Lidke M., l998, Program REGZ-98 do obliczeń regulacji napełnieniowej turbin. Algorytm obliczeń cieplno-przepływowych układu łopatkowego stopnia regulacyjnego i zaworów regulacyjnych o zadanym poziomie otwarcia, Opr. Diagnostyka Maszyn 9/98.
  • [7.14] Bohn D., Funke H.,2003, Experimental investigations into the nonuniform flow in a 4-stage turbine with special focus on the flow equalization in the first turbine stage, ASME Pap. GT2003- 38547.
  • [7.15] Lampart P., Szymaniak M., Kwidziński R., 2004, Investigation of circumferential non-uniformity in a partial admission control stage of a large power steam turbine, in: Technical Economic and Environmental Aspects of Combined Cycle Power Plants, ed. Z. Domachowski, Gdańsk University of Technology, pp. 261-271.
  • [7.16] Lampart P., Szymaniak M., Kwidziński R.,2005, Numerical investigation of unsteady flow in a partial admission control stage of a 200 Mw steam turbine, Proc. 6th Europ. Conf. on Turbomachinery Fluid Dynamics and thermodynamics, March 7-l l, Lille, France, pp. 376÷389.
  • [7.17] Lampart P. i in., 2005, Niestacjonarne siły aerodynamiczne działające na łopatki i wirnik turbiny Tl3K2l5, R. l6.2. Stopień regulacyjny, regulacja napełnieniowa (wraz z R. Rządkowskim), pp. 5l2÷530, R. 16.2.2. Badania stopnia regulacyjnego w modelu 2D RANS na średnicy podziałowej (wraz z M. Szymaniakiem), pp. 548÷575, R. l6.2.3. Badania stopnia regulacyjnego w modelu 2D pełnej geometrii (wraz z M. Szymaniakiem i R. Kwidzińskim), pp. 575-595;rozdziały w monografii: Modelowanie i diagnostyka oddziaływań mechanicznych, aerodynamicznych i magnetycznych w turbozespołach energetycznych, ed. J. Kiciński, Wyd. IMP PAN.
  • [7.18] Pigott R., 1980, Turbine blade vibration due to partial admission, Int. J. Mechanical Sci., Vol.22, pp.247÷264.
  • [7.19] Stastny M., Tajc L., Bednar L., Kolar P., Martinu R., Matas R.,2003, Pulsating Flows in the inlet of a nuclear steam turbine, Proc. 5th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Praha, Czech Rep., March 17-12, pp. 677-686.
  • [7.20] Pioger G., Testud G., 1978, Etude du comportement dynamique du reseau sur des temps longs. Application au reglage frequence-puissance, Electricite de France, Bulletin de la Direction des Etudes et Recherches, No. l, pp. 5÷59.
  • [7.21] Rządkowski R., Soliński M., 2005, Niestacjonarne siły aerodynamiczne działające na łopatki i wirnik turbiny Tl3K215, R. l6.2.l. Stopień regulacyjny. Model 3D nielepki, pp.531÷547,rozdział w monografii: Modelowanie i diagnostyka oddziaływań mechanicznych, aerodynamicznych i magnetycznych w turbozespołach energetycznych, ed. J. Kiciński. Wyd. IMP PAN.
  • [7.22] Lampart P., Szymaniak M., Kardaś A.,2003, Unsteady forces acting on rotor blades of a large power steam turbine control stage at different levels of partial admission, Trans. Institute of Fluid-Flow Machinery, Vol. 114, pp. 5-17.
  • [7.23] Lampart P., Szymaniak M., Rządkowski R., Unsteady load of partial admission control stage rotor of a large power steam turbine, ASME Pap. GT2004-53886.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0006-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.