PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statyczno-dynamiczne charakterystyki pracy okrętowych układów napędowych i ich wpływ na drgania konstrukcji kadłubów i nadbudówek statków

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
A method for the comprehensive, static and dynamic analysis of a ship power transmission system is presented. Static analysis of thę shaft line alignment and dynamic analysis of the torsional, longitudinal and bending vibrations of the system have been investigated. The influence of propulsion's dynamic behavior on ship hull and superstructure vibration is analysed. The presented calculation method has been verified by measurements on real ships. A calculation examples and measurements are enclosed for each type ofthe calculation undertaken. There are several numerical algorithms (mostly based on the Finite Element Method) for shaft line alignment and vibration analysis. The FEM model of the power transmission system is usually isolated from the ship hull; this being a basic assumption in all these męthods. In this case determining the proper boundary conditions is very impońant. Boundary conditions determining methods are not fully worked out in world shipbuilding. The ship hull, main engine body and bearings frame elasticity and deformation should be taken into account. Performance analysis of the oil film stiffiress and damping characteristics of stem tube and intermediate bearings, engine main bearings, thrust bearings and axial dampers should be carried out as well. Ship hull deformations, urder different load conditions and regular sea waves, are analysed. Thermal deformation of the main engine frame is also determined. Calculation methods of couplings between different types of shaft line vibrations and alignment are unsatisfactory. The torsional-bending-axial coupling action of the marine power transmission system should be accounted for while considering its dynamics. The determination of mutual interference of system vibrations and their boundary conditions is also necessary. All the new trends in the ship power transmission systems analysis methods are the main thesis of this paper. The paper presents also, idęntification of main excitation forces for ship hull and superstructure, as well as investigation of influence of analyzed excitation on ship vibration level. The following excitation forces have been analyzed: dynamic pressure on the transom deck, propeller-generated hydrodynamic forces, as well as intemal and external engine-generated forces. Rigidity and attenuation characteristics of lubricating oil film have been taken into account in the analysis for excitations transmitted by propulsion system bearings (stern tube bearing, intermediate bearing, engine's main and thrust bearings). The dynamic characteristics of ship power transmitting system have been also taken into account. Multivariant computations of ship vibration with use of formerly identified excitation forces have been carried out. Methodology for computation of excited vibrations of ship hull and superstructure has been developed. The results of analyzes have been verified by comparing the computation results with measuring tests.
Twórcy
autor
Bibliografia
  • 1. Aarvik J. A.: Software for shafting systems. DNV Software News, No. 3, pp. 11, December 2005.
  • 2. Ashrafiuon H., WhitmanA.M.: Design optimization of variable stroke compressors to minimize vibration by using asymptotic analysis. Journal of Vibration and Control, vol. 5, pp.461÷474,May 1999.
  • 3. Asmussen I., Menzel W., Mumm H.: Ship Vibration. Germanischer Lloyd, Issue No. 5/2001
  • 4. Bartlett Halley., Halley R., Rizvi S.S.I.: Hybrid modelling, simulation and torque control of a marine propulsion system. Proceedings of the Institutional of Mechanical Engineers. Part I - Journal of Systems and Control Engineering, vol. 213,pp. 1÷10, 1999.
  • 5. Barwell F. T.: Bearing Systems. Principles and Practice. Oxford University Press,1979.
  • 6. Besnier F., Du S., Ergin A., Hermundstad O.A., Hong S.Y., Iaccarino R., Kaminski M.L., Liu J.H., Mumm H., Murawski L., Shuri H.: Dynamic Response. 16th International Ship and Offshore Structures Congress (ISSC), 74 pages, Southampton, August 2006.
  • 7. Besnier F., Jian L., Murawski L., Weryk M: Assessment of the excitations coming from main engine and propeller. Marstruct - Network of Excellence on Marine Structures, Task 2.2, Chapter 10, Lisbon 2005 (electronic ver.).
  • 8. BjorckA., DahlquistG.: Metody Numeryczne. Państwowe Wydawnictwo Naukowe, Warszawa 1987.
  • 9. Brydum L., Jakobsen S. B.: Wibration characteristics of two - stroke, low speed diesel engines. MAN - B & W Diesel a/s, pp. 1÷16, Copenhagen 1987.
  • 10. Camisetti C., Molinari R.: Vertical and axial vibration of a ship propulsion system. Quaderno no 49, pp. 16÷28, Genova 1982.
  • 11. Chapman C. J., Sorokin S.V.: The forced vibration of an elastic plate under significant fluid loading. Journal of Sound and Vibration, vol. 281, pp. 719÷74I, March 2005.
  • 12. Charchalis A, Grządziela A.: Diagnosing the shafting of alignment by means vibration measurement. ICSV Congress (electronic ver.), Garmisch-Partenkirchen, 2000.
  • 13. ChenYung-Hsiang, Bertran I.M; Parametric study of ship - hull vibrations. International Shipbuilding Progress, vol. 37, no 410, pp. 151÷163, July 1990.
  • 14. Chłopek Z., Piaseczny L.: Irregularity of static working states of ship combustion piston engine. Polish Maritime Research, No 2(48), Vol. 13, pp.9÷14,April 2006.
  • 15. Cho D.S., Lee S.M., Chung K.Y.: Ship vibration control using a forceadjustable mechanical actuator Journal of Vibration and Control, vol. 5, pp. 779÷794, September 1 999.
  • 16. Choi SH., Glienicke J., Han D.C., Urlichs K.: Dynamic gear loads due to coupled lateral, torsional and axial vibrations in a helical geared system. Journal of Vibration and Acoustics-Transactions of the ASME, vol. 121, pp. 141÷148, April 1999.
  • 17. Choi G.-H., Lee J.-S., Kim H.-J.: Estimation of cavitation induced fluctuating forces on the hull for large container carriers. PRADS 2004, vol. 2, pp. 562÷567, Luebeck, Germany.
  • 18. Cowper B., DaCosta A., Bobyn S: Shaft alignment using strain gauges. Marine Technology, vol. 36, no 2, pp. 77 ÷91, 1999.
  • 19. Cudny K.: Linie Wałów okrętowych: Konstrukcje i obliczenia. Wydawnictwo Morskie, Gdańsk 1990.
  • 20. Dien R., Schwanecke H.: Die propellerbedingte wechselwirkung zwischen Schiff und maschine - teil2. Motorechnische, vol.34, pp. 45÷56, no 11, 1973.
  • 21. Djodjo B., Hofman M., Radojcic D., Motok M., Pejcic M.: A case of excessive lateral vibrations of patrol boat shafting: Failures, analysis and solution. Marine Technology and SNAME News, vol. 35, pp.242÷256, October 1998.
  • 22. GeveciM., OsburnA.W., FranchekM.A.: An investigation of crankshaft oscillations for cylinder health diagnostics. Mechanical Systems and Signal Processing, vol. 19, pp. 1107÷1134, September 2005.
  • 23. Grządziela A., Charchalis A.: Diagnosing of rotors with the use of vibroacoustic parameters. COMADEM l4th International Congress, pp. 495÷502, Manchester 2001.
  • 24. Haddara M. R.: On the torsional vibrations of marine diesel engines with variable inertia. Intemational Shipbuilding Progress, vol. 26, No. 298, pp. 111÷ 115, June 1979.
  • 25. Holden K. and all: Early Design-Stage Approach to Reducing Hull Surface Forces Due to Propeller Cavitation. Transaction SNAME - annual meeting, paper no.o14 (electronic), November 1980.
  • 26. Hoshino T.: Application of Quasi-Continuous Method to Unsteady Propeller Lifting Surface Problems' Journal of the Society of Naval Arch. of Japan, Vol. 158, pp.17÷29, 1985.
  • 27. Huse E.: The magnitude and distribution of propeller-induced surface forces on a single-screw ship model. Skipsmodelltanken, paper no.o100 (electronic), Trondheim, 1968.
  • 28. Jakobsen S.B.: Coupled axial and torsional vibration calculations on longstroke diesel engine. The Society of Naval Architects and Marine Engineers, vol. 99, pp. 405÷419, 1991.
  • 29. Jamjang S., Latorre R., Charnews D.: Experimental study of diesel engine cycleto-cycle variation. Journal of Ship Research, vol. 34, no 3, pp. 278÷223, Sept. 1990.
  • 30. Jenzer J.: Vibration Analysis for Modern Ship Machinery. Sulzer, Winterthur 1987.
  • 31. Jenzer J.: Influence of the Natural Cylinder Imbalance on Torsional Vibration. Wartsila NSD, 1996.
  • 32. Jenzer J., Welte Y.: Coupling Effect Between Torsional and Axial Vibrations in Installations With TWo-Stroke Diesel Engines. Wartsila NSD, 1991.
  • 33. Jha A., Nikolaidis E., Gangadharan S.: Cyclostationary random vibration of a ship propeller. Journal of Ship Research, vol. 47, no. 4, pp. 299÷312, December 2003.
  • 34. Kerwin JE., Lee CS.: Prediction of steady and unsteady marine propeller performance by numerical lifting- surface theory. SNAME Transactions, Vol. 86, pp. 43÷51,1978.
  • 35. Keshava Rao M. N., Dharaneepathy M. V., Gomathinayagam S., Ramaraju K., Charkravorty P.K.: Computer-aided alignment of ship propulsion shafts by strain-gage methods. Marine Technology, vol. 28, pp. 84÷90, March 1991.
  • 36. Keuning J.A: Distribution of added mass and damping along the length of a ship model moving at high forward speed. Intemational Shipbuilding Progress, vol. 37 (410), pp. 123÷150, July 1990.
  • 37. Kiciński J.: Teoria i Badania Hydrodynamicznych Poprzecznych Łożysk Ślizgowych. Ossolineum, 1994.
  • 38. Kiciński J.: Charakterystyki statyczne i dynamiczne łożysk hybrydowych z przekoszonymi panwiami. Trybologia, nr | (181), str. 71÷86, 2002.
  • 39. Kiciński J.: Wielkogabarytowe łożyska ślizgowe metodyka obliczeń. Trybologia, nr 4 (184), str. 1171÷1 179, 2002.
  • 40. Kiciński J.: Dynamika wirników i łożysk ślizgowych. Wydawnictwo IMP PAN, 530 str., 2005.
  • 41. Kiciński J., Drozdowski R., Marteny P.: The non-linear analysis of the effect of support construction properties on the dynamic properties of multi-support rotor systems. Journal of Sound & Vibration, No 4 (206), pp. 523÷539, 1997 .
  • 42. Kiełbasiński A., Schwetlick H.: Numeryczna Algebra Liniowa. Wydawnictwo Naukowo-Techniczne, Warszawa 1992.
  • 43. Kinns R., Bloor C.D.: Hull vibration excitation due to monopole and dipole propeller sources. Journal of Sound and Vibration, vol.270, pp.951÷980, March 2004.
  • 44. Kosowski K.: Some aspects of vibration control. Part I: Active and passive correction. Polish Maritime Research, No 4(42), Vol. 11, pp.22÷27, December 2004.
  • 45. Krawczuk M., Murawski L., Ostachowicz W., Cartmell M. P.: Modal analysis of the low-pressure frame of steam turbine. International Joint Power Generation Conference, vol. 3, pp.275÷287, ASME 1995.
  • 46. Kruszewski J., Gawroński W., Ostachowicz W., Tarnowski J., Wittbrodt E.: Metoda elementów skończonych w dynamice konstrukcji. Arkady, Warszawa 1984.
  • 47. Lee S. M., KimW H., ChangK.Y.: Application of higher order balancer to control the superstructure vibration of a container ship. Proceeding PRADS, pp. 1221÷1226, Luebeck_Travemuende 2001.
  • 48. Miszczak A.: Wiscoelastic unsteady lubrication of radial slide journal bearing at impulsive motion. Polish Maritime Research No 2(40), Vol. 11, pp. 9÷21, June 2004.
  • 49. Murawski L: Analysis of measurement methods and influence of propulsion plant working parameters on ship shafting alignment - part L Polish Maritime Research No 2(12), Vol. 4, pp.19÷22, June 1997.
  • 50. Murawski L.: Analysis of measurement methods and influence of propulsion plant working parameters on ship shafting alignment - part II. Polish Maritime Research No 3(13), Vol. 4, pp. 15÷20, September 1997.
  • 51. MurawskiL.: Axial vibrations of a marine shaft line: calculations measurements comparison Fourth International Conference on Marine Technology - Wessex Institute of Technology, UK, pp. 299÷308, WIT Press 2001.
  • 52. Murawski L.: Influence of journal bearing modeling method on shaft line alignment and whirling vibrations. PRADS - Eighth International Symposium on Practical Design of Ships and other Floating Structures, pp. 1205÷1212, Shanghai-China, Elsevier 200 1 .
  • 53. Murawski L.: Static and Dynamic Analyses of Marine Propulsion Systems. Oficyna Wydawnicza Politechniki Warszawskiej, pp. 148, Warszaw a 2003 .
  • 54. Murawski L.: Axial vibrations of a propulsion system taking into account the couplings and the boundary conditions. Journal of Marine Science and Technology, vol. 9, no. 4, pp. 171÷181, Tokyo 2004.
  • 55. Murawski L. : Metodyka modelowania sił wymuszających drgania nadbudówki i kadłuba statku. Biuletyn Wojskowej Akademii Technicznej, vol. LII 1 (605), str. 57÷98, Warszawa 2004.
  • 56. Murawski L.: Shaft line alignment analysis taking ship construction flexibility and deformations into consideration. Marine Structures No 1, Vol. 18, pp.62÷84, January 2005.
  • 57. Murawski L: Shaft line whirling vibrations: effects of numerical assumptions on analysis results. Marine Technology and SNAME News, vol.42, no.2, pp. 53÷61, April 2005.
  • 58. Murawski L.: Forces exciting vibrations of ships hull and superstructure. Polish Maritime Research No 4(46), Vol. 12, pp. 15÷2I, October 2005.
  • 59. Murawski L.: Ship structure dynamic analysis - effects of made assumptions on computation results. Polish Maritime Research. No2(48), Vol. 13, pp.3÷7, April2006.
  • 60. Murawski L., Ostachowicz W.: Analysis of ship hull deformation and power transmission system working under influence of regular wave. Zeszyty Naukowe Katedry Mechaniki Stosowanej, w 15/200l, str.257÷262, Politechnika Sląska, Gliwice 200 l .
  • 61. Murawski L., Ostachowicz W., Krawczuk M., Żak A.: Metodyka obliczeń numerycznych ułożenia okrętowych linii wałów. XXXVII Sympozjon PTMTS ,,Modelowanie w Mechanice", zeszyt nr 6, str. 255÷260, Gliwice 1998.
  • 62. Murawski L., Szmyt M.: Deformacja korpusu silnika okrętowego dużej mocy z uwzględnieniem odkształceń termicznych. Konferencja Użytkowników Oprogramowania MSC. SOFTWARE, (wersja elektroniczna), Mszczonów 2006.
  • 63. Nelson J.J., Tarbet R.M.: Propulsion system simulations: Making the right choice for the application. Naval Engineers Journal, vol. 109, pp. 83÷97, 1997 .
  • 64. Nestorides E. J.: A Handbook on Torsional Vibration. Cambridge University Press, 1958.
  • 65. PopowiczZ.: Współczynniki Sztywności i Tłumienia Filmu Olejowego Łożyska Wzdłużnego z Wahliwymi Segmentami. Zeszyty Naukowe IMP PAN, nr 4 (76) 1988.
  • 66. Pressicaud J.P.: Correlation between theory and reality in alignment of line shafting. Bureau Veritas, III, Paris 1986.
  • 67. Reed F. E., Bassett N.: Further studies of propeller-exited vibrations on Great Lakes cargo ship. SNAME Transactions, vol. 97, pp. 227÷241,1989.
  • 68. Rybczyński J., Łuczak M.: Determination of the acceptable area of the mutual displacement of the turboset bearings regarding vibration and loading. Polish Maritime Research, No 1(27), Vol. 8, pp. 7÷10, March 2001.
  • 69. Schiffer W., Jenzer J.: 3-D shafting calculations for marine installations: static and dynamic. Proceedings of ICES03, (electronic ver.), Salzburg,2003.
  • 70. Skaar KT., Raestad AE.: The relative importance of ship vibration excitation forces. RINA-Symposium on propeller Induced Ship Vibration, (electronic ver.), London, 1979.
  • 71. Spivack O.R., Kinns R., Peake N.: Acoustic excitation of hull surfaces by propeller sources. Journal of Marine Science and Technology, vol. 9, no. 3, pp. 109÷116, October 2004.
  • 72. Streeter E.: Handbook of Fluid Dynamics. McGraw-Hill, New York 1961.
  • 73. Takeda Y., Kusumoto H., Maeda T., Neki I.: Effect of external Fluid compressibility on hull vibration response. PRADS 9th International Symposium on Practical Design of Ships and Other Floating Structures, pp. 390÷395, Hamburg 2004.
  • 74. Ville R.: Actual dynamic behaviour and calculated approach to stern tube white metal bush. Bureau Veritas, pp. 200÷227, Paris 1986.
  • 75. VinerA. C.: Ship Vibration. Lloyd Register of Shipping, no53, pp.2÷46, London 1971.
  • 76. Wilson W. K.: Practical Solution of Torsional Vibration Problems. Chapman & Hall LTD, London 1963.
  • 77. Xiong Y. P., Xing J. T., Price W. G.: Power flow analysis and application for ship vibration and control. IMAM 2005, pp. 569÷577 , Lisbon, Portugal.
  • 78. Yung-Hsiang Ch., Bertran I.M.: Parametric study of ship - hull vibrations. International Shipbuilding Progress,vol.37 (410), pp. 151÷163, July 1990.
  • 79. Zhang W., Vlahopoulos N., Wu K.: An energy finite element formulation for high-frequency vibration analysis of externally fluid-loaded cylindrical shells with periodic circumferential stiffeners subjected to axi-symmetric excitation. Journal of Sound and Vibration, vol. 282, pp. 679÷700, April 2005.
  • 80. Zienkiewicz O. C., Taylor I. R. L.: The Finite Element Method. Fourth edition v. 1/2. McGraw-Hill, London 1992.
  • 81. DNV - Rules for Classification. Det Norske Veritas Classification AS, January 2004.
  • 82. Geislinger couplings and dampers. Geislinger GmbH, A-5300, Hallwang/Salzburg 2000.
  • 83. Lubricating Oil Requirements for Sulzer Crosshead Engines. New Sulzer Diesel, Winterthur 1991.
  • 84. Safting Alignment for Direct coupled Low-speed Diesel propulsion Plants. MAN B&W Diesel A/S, Copenhagen 1995.
  • 85. The Proper Use of Torque Transducers. Hottinger Baldwin Messtechnik GmbH, Darmstadt 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0006-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.