PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elasto-electric longitudin harmonic waves in porous long bones filled with physiological fluid

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Podłużne harmoniczne fale sprężysto-elektryczne w porowatych kościach długich wypełnionych płynem fizjologicznym
Języki publikacji
EN
Abstrakty
EN
Transmission of elasto-electric longitudinal harmonic waves in porous long bones filled with physiological fluid is investigated. The complete set of equations of the problem is obtained on the basic of the Biot theory of elastic waves in fluid-saturated porous media and the linear equations of electrokinetics, by means of quantities analogous to those in the theory of electrical transmission lines. Experimental findings from the biomechanical literature, supporting applicability of the proposed description, are presented. The electric signal associated with the propagation of longitudinal elastic waves in a wet long bone shaft can potientially be used for monitoring these waves during their application in e.g. bone porosity measurements.
PL
Przedmiotem pracy jest zagadnienie transmisji sprężysto-elektrycznych podłużnych fal harmonicznych w porowatych kościach długich wypełnionych płynem fizjologicznym. Zbiorczy układ równań zagadnienia wyprowadzono na podstawie Biotowskiej teorii propagacji fal sprężystych w ośrodkach porowatych nasyconych cieczą oraz liniowych liniowych równań elektrokinetyki, stosując opis za pomocą wielkości analogicznych do stosowanych w teorii elektrycznych linii przesyłowych. Uzasadniono przydatność zaproponowanego modelu teoretycznego przywołując z literatury wyniki badań eksperymentalnych dotyczące bioelektromechaniki kości. Sygnał elektryczny towarzyszący propagacji podłużnych fal sprężystych w trzonie kości długiej nasyconej płynem fizjologicznym mógłby, przypuszczalnie, zostać użyty celem monitorowania tych fal w zastosowaniu ich np. do pomiaru porowatości kości.
Rocznik
Tom
Strony
819--838
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Department of Environmental Mechanics, Pedagogical University of Bydgoszcz
  • Medical University of Poznan, Clinical Hospital 1
Bibliografia
  • 1. ALLARD J.F., 1993, Propagation of Sound in Porous Media, Elsevier Sci. Publ., London-New York.
  • 2. ASCENZI A., BENVENUTI A., 1977, Evidence of a State of Initial Stress in Osteonic Lamellae, J. Biomech, 10, 447-453.
  • 3. BASSET C.A.L., 1982, Pulsing Electromagnetic Fields, 19, A New Method to Modify Cell behavior in a Calcified and Noncalcified Tissues, Calcif. Tiss. Int., 34, 1-8.
  • 4. BIOT M.A., 1956a, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range, J. Acoust Soc. Am., 28, 2, 168-178.
  • 5. BIOT M.A., 1956b, Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range, J. Acoust. Soc. Am., 28, 2, 179-191.
  • 6. BIOT M.A., 1962, Mechanics of Deformation and Aoustic Propagation in Porous Dissipative Madia, J. Appl. Phys., 33, 1482-1498.
  • 7. BOURBlE T., COUSSY O., ZlNSZNER B., 1987, Acoustics of Porous Media, Gulf-Publ.Co., Huston TX.
  • 8. BOWEN R.M., 1976, Theory of Mixtures, in Continuum Physics, A.C. Eringen (edit.) 3, Academic Press, New York.
  • 9. CARTER D.R., HAYES W.C., 1978, The Compressive Behavior of Bone as a Two-Phase Porous Structure, Clin. Orthop., 135, 192-217.
  • 10. CHANDLER R., 1981, Transient Streaming Potential Measurements on Fluid-Saturated Porous Structures: an Experimental Verification of Biot's Slow Wave in the Quasi-Static Limit, J. Acoust. Soc. Am., 70, 116-121.
  • 11. CHANDLER R.N., JOHNSON D.L., 1981, The Equivalence of Quasi-Static Flow in Fluid-Saturated Porous Media and Biot's Slow Wave in the Limit of Zero Frequency, J. Appl. Phys., 52, 5, 3391-3395.
  • 12. EHLERS W., KUBIK J., 1994, On Finite Dynamic Equations for Fluid-Saturated Porous Media, Acta Mechanica , 105, 101-117.
  • 13. FERRIER J., Ross S.M., KANEHISA J., AUBIN J.E., 1986, Osteoclasts and Osteoblasts Migrate in Opposite Directions in Response to a Constant Electrical Field, J. Cell. Physiol, 129, 283-288.
  • 14. FUNG Y.C., 1988, Cellular Growth in Soft Tissues Affected by the Stress Level in Service, in, Tissue Engineering, R. Skalak, C.F. Fox (edit.), 45-50, Allan R. Liss, Inc., New York.
  • 15. GALKA A., TELEGA J.J., WOJNAR R., 1994, Equations of Electrokinetics and Flow of Electrolytes in Porous Media, J. Techn. Phys., 35, 49-59.
  • 16. GIES A.A., CARTER D.R., 1986, Experimental Determination of whole Long Bone Sectional Properties, J. Biomech., 19, 3, 257-258.
  • 17. GRODZINSKY A.J., 1983, Electromechanical and Physiological Properties of Connective Tissue, CRC Crit. Rev. Biomed. Engng, 9, 133-189.
  • 18. HART R.T., DAVY D.T., HEIPLE K.G., 1984, Mathematical Modelling of Stress Adaptation Process in Bone, in Conference on Funcional Adaptation in Bone Tissue, Calcif. Tiss. Int., Suppl.l, S104-S109.
  • 19. HUISKES R., 1982, On the Modelling of Long Bones in Structural Analysis, J. Biomech., 15, 65-69.
  • 20. JOHNSON D.L., PLONA T.J., SCALA C., PASIERB F., KOJIMA H., 1982, Tortuosity and Acoustic Slow Waves, Phys. Rev. Lett., 49, 2, 1840-1844.
  • 21. KATCHALSKY A., CURRAN P.F., 1965, Non-Equilibrium Thermodynamics in Biophysics, 149-180, Harward Univ. Press, Cambridge.
  • 22..KATSUBE N., CARROL M.M., 1987, The Modified Mixture Theory for Fluid-Filled Porous Materials, Trans. ASME J. Appl. Mech., 54, 35-40.
  • 23..KUBIK J., 1982, Large Elastic Deformations of Fluid-Saturated Porous Solid, J. Mecanique Theor. Appliq., 203-218.
  • 24..LAZENBY R., 1986, Porosity-Geometry Interaction in the Conservation of Bone Strength, J. Biomech., 19, 3, 257-258.
  • 25..MALECKI I., UKLEJEWSKI R., 1991, On the Method of Construction of Electro-Mechanical Analogies Systems by Means of Dimensional Analysis, Bull. Acad. Pol. Set. Techn. Sci, 39, 2, 359-370.
  • 26. MARTIN R.B., 1984, Porosity and Specific Surface of Bone, CRC Grit. Rev. Biomed. Engng, 10, 3, 179-222.
  • 27. MOW V.C., KUEI S.C., LAI W.M., ARMSTRONG C.G., 1980, Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression, Trans. ASME J. Biomech. Engng, 102, 73-74.
  • 28. NATALI A.N., MEROI E.A., 1989, A Review of the Biomechanical Properties of Bone as a Material, J. Biomed.Engng., 11, 4, 266-277.
  • 29. NOWIŃSKI J.D., DAVIES C.F., 1971, Propagation of Longitudinal Waves in Circularly Cylindrical Bone Elements, Trans. ASME J. Appl. Mech., 578-584.
  • 30. NOWIŃSKI J.L., DAVIES C.F., 1972, The Flexure and Torsion of Bones Viewed as Anisotropic Poroelastic Bodies, Int. J. Engng Sci., 10, 1063-1079.
  • 31. OGATA K., 1967, State Space Analysis of Control Systems, Prentice Hall, Englewood Cliffs, NJ (Polish transl., WNT Warszawa, 1974).
  • 32. PIEKARSKI K.R., 1981, Biomechanics of Bone, in, Biomechanics VII A, International Series on Biomechanics, 3A, 23-31, A. Morecki, K. Fidelus, K. Kędzior, A. Wit (edit.), Univ. Park Press - Polish Sci. Publ. Warszawa-Baltimore.
  • 33. PLONA T.J., 1980, Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultrasonic Frequencies, Appl. Phys. Lett., 36, 4, 259-262.
  • 34. SALZSTEIN R.A., POLLACK S.R., MAK A.F.T., PETROV N., 1987, Electromechanical Potentials in Cortical Bone. I - A Continuum Approach, J. Biomech., 20, 3, 261-270.
  • 35. SALZSTEIN R.A., POLLACK S.R., 1987, Electromechanical Potentials in Cor¬tical Bone. II - Experimental Analysis, J. Biomech., 20, 3, 271-280.
  • 36. SCOTT G.C., KOROSTOFF E., 1990, Oscillatory and Step Response: Electromechanical Phenomena in Human and Bovine Bone, J. Biomech., 23, 2,127-143.
  • 37. SEDLIN E., 1965, A Rheological Model for Cortical Bone, Acta Orthop. Scand., 36, Suppl. 83, 3-77.
  • 38. UKLEJEWSKI R., KRAKOWSKI M., 1982, Electromechanical Analogies for the Theory of Consolidation, Engng. Trans., 30, 3-4, 317-326.
  • 39. UKLEJEWSKI R., 1993, Electromechanical Potentials in a Fluid-Filled Cortical Bone: Initial Stress State in Osteonic Lamellae, Piezoelectricity and Streaming Potential Roles - A Theory, Biocybern. Biomed. Engng., 13, 1-4, 97-112.
  • 40. UKLEJEWSKI R., 1994, Initial Piezoelectric Polarization of Cortical Bone Matrix as a Determinant of the Electrokinetic Potential Zeta of that Bone. Osteonic Lamella as a Mechanoelectret, J. Biomech., 27, 7, 991-993.
  • 41. UKLEJEWSKI R., 1994, On the Electromechanical Properties of Porous Cortical Bone Filled with Physiological Fluid and on the Acousto-Electrical Effects in Wet Long Bone Shafts, Habilitation Thesis, Inst, of Biocybern. Biomed. Engng. PAS, Rept. 35.
  • 42. WILLIAMS J.L., 1992, Ultrasonic Wave Propagation in Cancellous and Cortical Bone: Prediction of Some Experimental Results by Biot's Theory, J. Acoust. Soc. Am., 91, 2, 1106-1112.
  • 43. ZICHNER L., 1984, Elektrostimulation des Knochens. Eine tierexperimentelle und klinische Studie, Enke Verl., Stuttgart.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0002-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.