PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Love wave-induced liquefaction in a saturated sand layer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Upłynnienie gruntu w warstwie nawodnionego piasku wywołane propagacją fal Love'a
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with the plane strain problem of Love wave propagation through a water-saturated sand layer overlaying an elastic half-space. Dynamic loads, induced by the wave passage, generate irreversible strains in the soil matrix, giving rise to the development of excess pore water pressures and subsequent reduction of soil liquefaction. The process of pore pressure generation is analysed within the framework of compaction theory of saturated granular media. Results of numerical calculations, carried out by means of the finite element method, illustrate the evolution of pore pressures and the development of liquefaction in the subsoil, as well as the changes in the free surface displacements.
PL
Praca poświęcona jest płaskiemu zagadnieniu propagacji fal Love'a w warstwie piasku nasyconego woda, znajdującej się na półprzestrzeni ośrodka sprężystego. Obciążenia dynamiczne spowodowane przejściem fali wywołują nieodwracalne odkształcenia w szkielecie gruntowym, które są przyczyną zwiększenia ciśnienia w wodzie wypełniającej pory ośrodka i tym samym zmniejszenia naprężeń efektywnych w gruncie, co w końcowym przypadku może prowadzić do upłynnienia podłoża. Proces generacji ciśnień porowych jest analizowany na bazie teorii zagęszczenia nawodnionych ośrodków granulowanych. Wyniki obliczeń numerycznych, przeprowadzonych w oparciu o metodę elementów skończonych, ilustrują ewolucję ciśnień porowych, rozwój strefy upłynnienia w podłożu oraz zmiany w czasie przemieszczeń powierzchni swobodnej warstwy.
Słowa kluczowe
Rocznik
Tom
Strony
723--744
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom
Bibliografia
  • 1. ACHENBACH J.D., 1973, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
  • 2. BAŻANT Z.P., KRIZEK R.J., 1976, Endochronic Constitutive Law for Liquefaction of Sand, Proc. ASCE, J. Mech. Engng Div., 102, 225-238.
  • 3. BAŻANT Z.P., KRIZEK R.J., SHIEH, C.L., 1983, Histeretic Endochronic Theory for Sand, J. Engng Mech. - ASCE, 109, 1073-1095.
  • 4. BERRILL J.B., DAVIS R.O., 1985, Energy Dissipation and Seismic Liquefaction of Sands: Revised Model, Soils and Found., 25, 106-118.
  • 5. BIOT M.A., WILLIS D.G., 1957, The Elastic Coefficients of the Theory of Consolidation, J. Appl. Mech., 10, 594-601.
  • 6. CHAKRABORTY S.K., DEY S., 1982, The Propagation of Love Waves in Water-Saturated Soil Underlain by a Heterogeneous Elastic Medium, Acta Mech., 44, 169-176.
  • 7. CHATTOPADHYAY A., CHAKRABORTY M., KUSHWAHA V., 1986, On the Dispersion Equation of Love Waves in a Porous Layer, Acta Mech., 58, 125-136.
  • 8. DERESIEWICZ H., 1961, The Effect of Boundaries on Wave Propagation in a Liquid-Filled Porous Solid, II. Love Waves in a Porous Layer, Bull. Seism. Soc. Am., 51, 51-59.
  • 9. EWING W.M., JARDETZKY W.S., PRESS F., 1957, Elastic Waves in Layered Media, McGraw-Hill, New York.
  • 10. FINN W.D., LEE K.W., MARTIN G.R., 1977, An Effective Stress Model for Liquefaction, Proc. ASCE, J. Geotech. Engng Div., 103, 517-533.
  • 11. GAZETAS G., YEGIAN M.K., 1979, Shear and Rayleigh Waves in Soil Mechanics, Proc. ASCE, J. Geotech. Engng Div., 105, 1455-1470.
  • 12. GHABOUSSI J., DIKMEN S.U., 1978, Liquefaction Analysis of Horizontally Layered Sands, Proc. ASCE, J. Geotech. Engng Div., 104, 341-356.
  • 13. KONCZAK Z., 1989, The Propagation of Love Waves in a Fluid-Saturated Porous Anisotropic Layer, Acta Mech., 79, 155-168.
  • 14. LAW K.T., CAO Y.L., HE G.N., 1990, An Energy Approach for Assessing Seismic Liquefaction Potential, Can. Geotech. J., 27, 320-329.
  • 15. LYSMER J., 1970, Lumped Mass Method for Rayleigh Waves, Bull. Seism. Soc. Am., 60, 89-104.
  • 16. MARTIN G.R., FINN W.D.L., SEED H.B., 1975, Fundamentals of Liquefaction under Cyclic Loading, Proc. ASCE, J. Geotech. Engng Div., 101, 423-438.
  • 17. MARTIN P.P., SEED H.B., 1979, Simplified Procedure for Effective Stress Analysis of Ground Response, Proc. ASCE, J. Geotech. Engng Div., 105, 739-758.
  • 18. MORLAND L.W., 1993, Compaction and Shear Settlement of Granular Materials, J. Mech. Phys. Solids, 41, 507-530
  • 19. MORLAND L.W., SAWICKI A., 1983, A Mixture Model for the Compaction of Saturated Sand, Mech. Mat., 2, 217-231.
  • 20. MORLAND L.W., SAWICKI A., 1985, A Model for Compaction and Shear Hysteresis in Saturated Granular Materials, J. Mech. Phys. Solids, 33, 1-24.
  • 21. MORLAND L.W., SAWICKI A., MILNE P.C., 1993, Uni-Axial Compaction of a Granular Material, J. Mech. Phys. Solids, 41, 1755-1779.
  • 22. MORLAND L.W., STAROSZCZYK R., 1998, Uni-Axial Wave Propagation and Pore Pressure Generation in Fluid Saturated Sands Exhibiting Irreversible Compaction, Int. J. Num. Anal. Meth. Geomech., in press.
  • 23. NEMAT-NASSER S., SHOKOOH A., 1979, A Unified Approach to Densification and Liquefaction of Cohesionless Sand in Cyclic Shearing, Can. Geotech. J., 16, 659-678.
  • 24. PANDE G.N., ZIENKIEWICZ O.C. (EDIT.), 1982, Soil Mechanics - Transient and Cyclic Loads, Wiley, Chichester.
  • 25. SAWICKI A., MORLAND L.W., 1985, Pore Pressure Generation in a Saturated Sand Layer Subjected to a Cyclic Horizontal Acceleration at its Base, J. Mech. Phys. Solids, 33, 545-559.
  • 26. SAWICKI A., STAROSZCZYK R., 1995, Development of Ground Liquefaction Due to Surface Waves, Arch. Mech., 47, 557-576.
  • 27. SCHAEFFER D.G., 1990, Mathematical Issues in the Continuum Formulation of Slow Granular Flow, In: Joseph D.D. and Schaeffer D.G. (edit.) Two Phase Flows and Waves, 118-129, Springer, New York.
  • 28. SEED H.B., MARTIN P.P., LYSMER J., 1976, Pore-Water Pressure Changes During Soil Liquefaction, Proc. ASCE, J. Geotech. Engng Div., 102, 323-346.
  • 29. STAROSZCZYK R., 1996, Pore Pressure Generation and Liquefaction in Saturated Sands Due to the Propagation of Surface Waves, Acta Geophys. Pol., 44, 195-218.
  • 30. STUDER J., KOK L., 1980, Blast-Induced Excess Porewater Pressure and Liquefaction. Experience and Application, Proc. Int. Symp. on Soil under Cyclic and Transient Loading, Swansea, Balkema, 581-593.
  • 31. SYVITSKI J., SCHAFER C, 1990, ADFEX - Environmental Impact Statement, Geological Survey of Canada, Dartmouth.
  • 32. VALANIS K.C., 1971, A Theory of Viscoplasticity without a Yield Surface. I. General Theory, Arch. Mech., 23, 517-533.
  • 33. VALANIS K.C., PETERS J.F., 1991, An Endochronic Plasticity Theory with Shear-Volumetric Coupling, Int. J. Num. Anal. Meth. Geomech., 15, 77-102.
  • 34. VALANIS K.C., READ H.E., 1982, A New Endochronic Plasticity Model for Soils, In: Pande G.N., Zienkiewicz O.C. (edit.) Soil Mechanics - Transient and Cyclic Loads, 375-417, Wiley, Chichester.
  • 35. ZIENKIEWICZ O.C, LEUNG K.H., HINTON E., CHANG C.T., 1982, Liquefaction and Permanent Deformation under Dynamic Conditions - Numerical So¬lution and Constitutive Relations, In: Pande G.N. and Zienkiewicz O.C. (edit.) Soil Mechanics - Transient and Cyclic Loads, 71-103, Wiley, Chichester.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM1-0002-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.